Tetrahedral plot diagram: A geometrical solution for quaternary systems

TOSHIAKI ShIMURA ${ }^{1, *}$ and ANTHONY I.S. KEMP ${ }^{2}$

'Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8512, Japan ${ }^{2}$ Centre for Exploration Targeting, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia

Abstract

The transformation from a tetrahedral four-component system to an XYZ-orthogonal coordinate axis system has been solved using the geometry of a tetrahedron. If a four component mixing ratio is described as t, l, r, and $f($ here, $t+l+r+f=1$), the transforming equations can be written as

$$
\begin{aligned}
& x=(r+1-l) / 2 \\
& y=\frac{\sqrt{3}}{2} t+\frac{\sqrt{3}}{6} f
\end{aligned}
$$

and

$$
z=\frac{\sqrt{6}}{3} f
$$

A tetrahedral plot diagram can be easily constructed using the algorithms described in this paper. We present an implementation of these algorithms in a custom-designed Microsoft Excel spreadsheet, including adjustable viewing angles for the tetrahedral plot. This will be of general utility for petrological or mineralogical studies of quaternary systems.

Keywords: Tetrahedral diagram, triangular diagram, quaternary systems, phase diagram, threedimension, trilinear coordinates, tetrahedron

