American Mineralogist, Volume 100, pages 2545-2547, 2015

Tetrahedral plot diagram: A geometrical solution for quaternary systems TOSHIAKI SHIMURA^{1,*} AND ANTHONY I.S. KEMP²

¹Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8512, Japan ²Centre for Exploration Targeting, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia

ABSTRACT

The transformation from a tetrahedral four-component system to an XYZ-orthogonal coordinate axis system has been solved using the geometry of a tetrahedron. If a four component mixing ratio is described as t, l, r, and f (here, t + l + r + f = 1), the transforming equations can be written as

$$x = (r+1-l)/2$$
$$y = \frac{\sqrt{3}}{2}t + \frac{\sqrt{3}}{6}t$$

and

$$z = \frac{\sqrt{6}}{3}f$$

A tetrahedral plot diagram can be easily constructed using the algorithms described in this paper. We present an implementation of these algorithms in a custom-designed Microsoft Excel spreadsheet, including adjustable viewing angles for the tetrahedral plot. This will be of general utility for petrological or mineralogical studies of quaternary systems.

Keywords: Tetrahedral diagram, triangular diagram, quaternary systems, phase diagram, threedimension, trilinear coordinates, tetrahedron