American Mineralogist, Volume 100, pages 1378–1385, 2015

ACTINIDES IN GEOLOGY, ENERGY, AND THE ENVIRONMENT

²²²Rn and ²²⁰Rn emanations as a function of the absorbed α-doses from select metamict minerals[†]

DARIUSZ MALCZEWSKI^{1,*} AND MARIA DZIUROWICZ¹

¹Faculty of Earth Sciences, University of Silesia, Bedzinska 60, 41-200 Sosnowiec, Poland

ABSTRACT

Metamict minerals contain uranium and thorium, which contribute to physical degradation or metamictization of their crystal structures over geologic time. The damage occurs primarily through progressive overlapping recoil nuclei collision cascades from α -decay of ²³⁸U, ²³²Th, ²³⁵U, and their daughter products. We measured ²²²Rn and ²²⁰Rn emanations from metamict samples of nine oxides (brannerite, davidite, fergusonites, pyrochlores, samarskites, and uraninite), two phosphates (monazites), and eight silicates (cerite, gadolinites, perrierite, rinkite, thorite, turkestanite, and vesuvianite). The total absorbed α -doses ranged from 1.4 × 10¹⁵ to 6.1 × 10¹⁸ α -decay mg⁻¹ for cerite and uraninite, respectively. The ²²²Rn emanation coefficients varied from 5 × 10⁻⁵% (uraninite) to 2.5% (turkestanite). The ²²⁰Rn emanation coefficients occurred among metamict minerals containing the highest concentrations of ²³⁸U (i.e., uraninite, samarskites, and brannerite). Overall, the ²²²Rn and ²²⁰Rn emanation coefficients occurred among metamict minerals containing the highest concentrations of ²³⁸U (i.e., uraninite, samarskites, and brannerite). Overall, the ²²²Rn and ²²⁰Rn emanation coefficients occurred among metamict minerals containing the highest concentrations of ²³⁸U (i.e., uraninite, samarskites, and brannerite). Overall, the ²²²Rn and ²²⁰Rn emanation coefficients or among metamict minerals containing the highest concentrations of ²³⁸U (i.e., uraninite, samarskites, and brannerite). Overall, the ²²²Rn and ²²⁰Rn emanation coefficients or amongtion coefficients or anging reported values.

Keywords: Metamict minerals, radon and thoron, emanation coefficients, emission rates, alfa doses