American Mineralogist, Volume 100, pages 1076-1083, 2015

CHEMISTRY AND MINERALOGY OF EARTH'S MANTLE

Influence of hydration on ²³Na, ²⁷Al, and ²⁹Si MAS-NMR spectra of sodium saponites and sodium micas[†]

JESUS SANZ^{1,*}, ISABEL SOBRADOS¹ AND JEAN-LOUIS ROBERT²

¹Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain ²IMPMC, UMR 7590, CNRS-Université Pierre et Marie Curie, Case courrier 115, 4 place Jussieu, 75252 Paris Cedex 05, France

ABSTRACT

Synthetic sodium saponites, $Na_xMg_3(Si_{4-x}Al_x)O_{10}(OH)_2 \cdot nH_2O$, with $0.33 \le x \le 1$, and trioctahedral sodium micas series, $Na(Mg_{3-y}Al_y)(Si_{3-y}Al_{1+y})O_{10}(OH)_2 \cdot nH_2O$, with $0 \le y \le 1$, have been investigated by MAS-NMR spectroscopy. The presence of anhydrous, one-layer and two-layer hydrates, deduced by X-ray diffraction, has been associated with specific lines detected in ²³Na MAS-NMR spectra. In these phyllosilicates, the location of tetra- and octahedral charge has been analyzed by ²⁷Al MAS-NMR spectroscopy. The salient result is the major effect of the interlayer charge on ²⁹Si chemical shift of the four NMR components ascribed to Si₃, Si₂Al, SiAl₂, and Al₃ environments. This effect is much more important than the most commonly accepted contribution of the ditrigonal distortion of tetrahedral sheets. In saponites, ²⁹Si MAS-NMR spectra change considerably with the sodium hydration. In dehydrated samples, where Na cations are engaged in two pseudo-hexagonal cavities, ²⁹Si MAS-NMR components split as a consequence of the partial sodium occupancy of three neighboring hexagonal rings that surrounds a particular tetrahedron. In hydrated samples, where Na⁺ cations interact with water, chemical shifts of resolved components are averaged as a consequence of interlayer water and cation mobilities.

Keywords: 2:1 phyllosilicates; ²⁹Si, ²⁷Al, and ²³Na MAS-NMR spectroscopy; Si-Al distribution; charge location; hydration state