Complete substitution of Fe²⁺ by Mg in Fe₄O₅: The crystal structure of the Mg₂Fe₂O₅ end-member

TIZIANA BOFFA BALLARAN^{1,*}, LAURA UENVER-THIELE² AND ALAN B. WOODLAND²

¹Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany ²Institut für Geowissenschaften, Goethe-Universität Frankfurt, Altenhöferallee 1, D-60438 Frankfurt am Main, Germany

ABSTRACT

The crystal structure of a novel Mg₂Fe₂O₅ oxide synthetized at 15 GPa and 1550 °C has been determined by means of single-crystal X-ray diffraction. This compound is isostructural with Fe₄O₅ and can be considered as the other end-member of a solid solution between these two oxides involving the substitution of Fe²⁺ for Mg. The resulting unit-cell lattice parameters a = 2.8889(4), b = 9.7282(4), and c = 12.5523(7) Å are smaller than those of Fe₄O₅. Mg and Fe³⁺ cations are found to be disordered among the three crystallographic sites of the Mg₂Fe₂O₅ structure, although preference of Mg for the trigonal prism coordination (M3) is observed. Substitution of Mg into the Fe₄O₅ structure reduces the octahedral distortion of both the M1 and M2 sites. Like Mg, Cr has recently been found to substitute into Fe₄O₅, so that Fe³⁺/ Σ Fe can vary from 0 to 1.0 in the Mg-Cr-Fe oxides system. Substitution of both Mg and Cr in Fe₄O₅ also makes this phase more relevant for bulk compositions expected in the Earth's transition zone and deep upper mantle. M₄O₅ phases having the CaFe₃O₅-type structure, therefore, need to be considered as a new addition to the phase relations of several simple oxide systems at pressure and temperature conditions at which the spinel-structured phases become unstable.

Keywords: Mg₂Fe₂O₅, Fe₄O₅, transition zone, high-pressure, crystal structure