## American Mineralogist, Volume 100, pages 66-82, 2015

## what LURKS IN THE MARTIAN ROCKS AND SOIL? INVESTIGATIONS OF SULFATES, PHOSPHATES, AND PERCHLORATES Mid-infrared emission spectroscopy and visible/near-infrared reflectance spectroscopy of Fe-sulfate minerals<sup>†</sup>

## MELISSA D. LANE<sup>1,\*</sup>, JANICE L. BISHOP<sup>2</sup>, M. DARBY DYAR<sup>3</sup>, TAKAHIRO HIROI<sup>4</sup>, STANLEY A. MERTZMAN<sup>5</sup>, DAVID L. BISH<sup>6</sup>, PENELOPE L. KING<sup>7,8</sup> AND A. DEANNE ROGERS<sup>9</sup>

<sup>1</sup>Planetary Science Institute, 1700 E. Fort Lowell Road, Suite 106, Tucson, Arizona 85719, U.S.A.
<sup>2</sup>SETI Institute/NASA-Ames Research Center, Mountain View, California 94043, U.S.A.
<sup>3</sup>Mount Holyoke College, South Hadley, Massachusetts 01075, U.S.A.
<sup>4</sup>Department of Geological Sciences, Brown University, Providence, Rhode Island 02912, U.S.A.
<sup>5</sup>Department of Earth and Environment, Franklin and Marshall College, Lancaster, Pennsylvania 17603, U.S.A.
<sup>6</sup>Department of Geological Sciences, Indiana University, Bloomington, Indiana 47405, U.S.A.
<sup>7</sup>Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia
<sup>8</sup>Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York 11790, U.S.A.

## ABSTRACT

Sulfate minerals are important indicators for aqueous geochemical environments. The geology and mineralogy of Mars have been studied through the use of various remote-sensing techniques, including thermal (mid-infrared) emission and visible/near-infrared reflectance spectroscopies. Spectral analyses of spacecraft data (from orbital and landed missions) using these techniques have indicated the presence of sulfate minerals on Mars, including Fe-rich sulfates on the iron-rich planet. Each individual Fe-sulfate mineral can be used to constrain bulk chemistry and lends more information about the specific formational environment [e.g., Fe<sup>2+</sup> sulfates are typically more water soluble than Fe<sup>3+</sup> sulfates and their presence would imply a water-limited (and lower Eh) environment; Fe<sup>3+</sup> sulfates form over a range of hydration levels and indicate further oxidation (biological or abiological) and increased acidification]. To enable better interpretation of past and future terrestrial or planetary data sets, with respect to the Fe-sulfates, we present a comprehensive collection of mid-infrared thermal emission (2000 to 220 cm<sup>-1</sup>; 5–45  $\mu$ m) and visible/near-infrared  $(0.35-5 \ \mu m)$  spectra of 21 different ferrous- and ferric-iron sulfate minerals. Mid-infrared vibrational modes (for SO<sub>4</sub>, OH, H<sub>2</sub>O) are assigned to each thermal emissivity spectrum, and the electronic excitation and transfer bands and vibrational OH, H<sub>2</sub>O, and SO<sub>4</sub> overtone and combination bands are assigned to the visible/near-infrared reflectance spectra. Presentation and characterization of these Fe-sulfate thermal emission and visible/near-infrared reflectance spectra will enable the specific chemical environments to be determined when individual Fe-sulfate minerals are identified.

**Keywords:** Mid-infrared, visible, near-infrared, spectroscopy, emissivity, reflectivity, sulfate, spectra, reflectance, vibrational, iron, emission, reflectance