CHEMISTRY AND MINERALOGY OF EARTH'S MANTLE

High-pressure high-temperature transitions in MgCr₂O₄ and crystal structures of new Mg₂Cr₂O₅ and post-spinel MgCr₂O₄ phases with implications for ultrahigh-pressure chromitites in ophiolites[†]

TAKAYUKI ISHII^{1,*}, HIROSHI KOJITANI¹, KIYOSHI FUJINO², HITOSHI YUSA³, DAISUKE MORI¹, YOSHIYUKI INAGUMA¹, YOSHITAKA MATSUSHITA³, KAZUNARI YAMAURA³ AND MASAKI AKAOGI¹

¹Department of Chemistry, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan ²Geodynamics Research Center, Ehime University, Matsuyama, Ehime 790-8577, Japan ³National Institute of Materials Science, Namiki, Tsukuba 305-0044, Japan

ABSTRACT

We determined phase relations in MgCr₂O₄ at 12–28 GPa and 1000–1600 °C using a multi-anvil apparatus. At 12–15 GPa, spinel-type MgCr₂O₄ (magnesiochromite) first decomposes into a mixture of new Mg₂Cr₂O₅ phase + corundum-type Cr₂O₃ at 1100–1600 °C, but it dissociates first into MgO periclase + corundum-type Cr₂O₃ at 1000 °C. At about 17–19 GPa, the mixture of Mg₂Cr₂O₅ phase + corundum-type Cr₂O₃ at 1000 °C. At about 17–19 GPa, the mixture of Mg₂Cr₂O₅ phase + corundum-type Cr₂O₃ at nasforms to a single MgCr₂O₄ phase. Structure refinements using synchrotron X-ray powder diffraction data indicated that the high-pressure MgCr₂O₄ phase has a CaTi₂O₄-type structure (*Cmcm*), and that the basic structure of the Mg₂Cr₂O₅ phase is the same as that of recently found modified ludwigite-type Mg₂Al₂O₅ and Fe₂Cr₂O₅ (*Pbam*). The phase relations in this study may suggest that natural chromitites in the Luobusa ophiolite regarded as the deep-mantle origin were derived from the mantle shallower than the depths corresponding to pressure of 12–15 GPa because of absence of the assemblage of (Mg,Fe)₂Cr₂O₅ + Cr₂O₃ in the chromitites.

Keywords: Post-spinel, Rietveld refinement, crystal structure, high pressure, phase transition, magnesiochromite, calcium titanate, chromitite, ophiolite