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Summary 

The purpose of this Appendix is to show that the solution for elastic relaxation in host-inclusion 
systems found by Zhang (1988) is a special case of the more general solution provided in the 
current paper. 
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Introduction 

In the main body of the paper we discussed the calculation of the residual pressure on an 

inclusion surrounded by a host phase, which arises from changes in pressure and temperature. 

The final inclusion pressure endIP ,  is comprised of two parts:  

relaxIIendI PPP ,,
*   

The part *
IP  arises solely from constraining the volume change of the inclusion phase to that of 

the host phase, without any mutual relaxation. It can be calculated from the EoS of the two 

phases. By use of the concept of the isomeke, we showed that the mutual elastic relaxation of 

the host and inclusion that gives rise to relaxIP , comes from a fractional volume change of the 

inclusion of 21KH . The H  is the fractional volume change (i.e. the volume strain) of the host 

due to the isothermal pressure reduction from the pressure Pfoot on the isomeke to PH,end, and the 

parameter 21K  is an elastic interaction parameter whose value is dependent on the elastic 

properties of both the host and inclusion:  
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By using linear elasticity and assuming that the elastic parameters are invariant with pressure, 

Zhang (1998) calculated that the fractional volume change of the inclusion due to relaxation is:  
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This, from the definition of bulk modulus as 
V
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VK
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  corresponds to a pressure change of: 
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In the main body of the paper we noted that this expression for relaxation provides a good 

estimate of the relaxation even when the elasticity of the host and inclusion is not linear, 

provided that: 

1. The host is relatively stiff with a high shear modulus GH. 

2. That the difference between Pfoot and PI,thermo is small. 

 

 Here we show algebraically that the Zhang (1998) result is a special case of the more general 

solution that we have derived.  

 

Derivation of the Zhang solution: recovery to P=0 

 

To derive the Zhang (1998) solution, we now impose the conditions of linear elasticity upon our 

general result. For linear elasticity, the rate of change of volume with pressure is constant, so we 

can define the elastic response of a material as 
K

P




0V

V
, with the quantity K also a constant. 

Note that this requires the use of a reference volume V0. Therefore with ‘linear elasticity’ the 

value of K is only the true bulk modulus in the immediate vicinity of V0.  We choose the foot of 

the isomeke, Pfoot as our reference point, where 0,, VVV footIfootH  . In order to make the 

derivation clear, we first derive an expression for the volume relaxation strain for the case when 

the final external pressure endHP , =0. 
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The final volume strain of the host alone is then, for linear elasticity:  
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The volume relaxation strain is then, from our result: 
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This defines the volume relaxation in terms of the original pressure of the system on the 

isomeke. We now find an expression for Pfoot so that we can express the volume relaxation in 

terms of the final inclusion pressure PI,end. The final pressure of the inclusion after relaxation is 

defined from the volume strain of our solution as: 
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Thus: 
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Re-arrangement yields: 
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Substitution of this expression for Pfoot in equation (A4) yields: 
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By taking 
HK

K21 inside: 
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This is the result of Zhang (1998) and others when the final external pressure is zero. We 

therefore see that the result of Zhang (1998) does not arise from the assumption of linear 

elasticity over the entire decompression from entrapment conditions, but can be derived instead 

from the assumption of linear elasticity over the decompression of the host from Pfoot to PH,end. 

This explains why it can be a good approximation to the correct approach. 
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Derivation of the Zhang solution: recovery to any P 

 

The derivation for the case when the final external pressure 0, endHP follows exactly the same 

steps, but the algebra to reduce the expressions is a little more painful. 

The final volume strain of the host alone is now: 
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And the volume relaxation strain is therefore: 
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Equation (A5) remains the same, but substitution for the host strain produces instead of (A6): 
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Solving this for Pfoot leads to: 
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Substitution of this expression for Pfoot in equation (A11) yields: 
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With the manipulation from the first derivation, this immediately reduces to: 
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Re-arranging yields: 
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The term in the square bracket reduces to simply the value -1, so the final expression becomes: 
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Thus the result derived from linear elasticity is a special case of the more general solution 

presented in the main body of this paper.  
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