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Appendix 

We use a mineral abundance extraction algorithm similar to that used by Cahill and Lucey (2007). 
Spectrum libraries are computed for the system plagioclase, low-Ca pyroxene, high-Ca pyroxene, olivine, 
and nanophase iron of two sizes with different optical effects. The foundation of the compositions are the 
ternary system of olivine and the two pyroxenes computed at 10% intervals for a total of 66 compositions. 
These compositions are then mixed with plagioclase at 1% intervals from 0–100% plagioclase for a total 
of 6600 compositions. These compositions in turn are mixed with seven amounts of nanophase iron to 
simulate space weathering effects. Nanophase iron includes optically small material modeled by 
(“submicroscopic iron”) Hapke (2001) and studied by Noble et al. (2007) and Noble and Lucey (2007), 
and larger nanophase iron that we call Britt-Pieters particles (Lucey and Riner 2011; Britt and Pieters 
1994) that are an important darkening phase in lunar soils. The abundances of these two components are 
matched to the measured abundances of these phases in the LSCC soils. For simplicity the abundance of 
the two sizes are linked by the relationship Britt-Pieters (wt%) = 2* submicroscopic iron (wt%) that 
causes the libraries to occupy the same spectral space as the LSCC data in terms of reflectance and 
continuum slope. We remove a continuum from all of the model spectra (6600 × 7) and from the 
unknown spectrum (for example, one of the LSCC spectra) and we find the closest spectral match and use 
the composition associated with that model as the mineral composition of that spectrum. 

The comparison between the libraries and the spectrum under analysis is an evenly weighted average 
of the correlation of the library and target spectra after removal of a continuum, and the sum of the 
absolute value of the total of the difference between the library and target spectra. The correlation metric 
emphasizes the similarity in the shape of the spectrum, while the difference metric includes band intensity 
as an important parameter. 

We plot the result of exercising the mineral mapping algorithm in Figure A1 showing there is a poor 
correlation of the model and measured mineralogy (>20 wt% error). However, the behavior of the model 
against individual minerals provides clues to its shortcomings. The low correlation is due to systematic 
over and under-prediction of specific minerals, for example, olivine is greatly overestimated. 
Furthermore, we find that forward modeling of the LSCC compositions (using the LSCC compositions as 
inputs to compute a reflectance spectrum) produces a set of spectra that do not match the observed trend 
of band minimum vs. the ratio of low-Ca to total pyroxene (Fig. A2). 

Successful estimates of relative abundance of minerals in an assemblage using a mixing model 
requires at the minimum that the relative intensities of the bands of the end-members accurately reflect 
the relative intensities of the bands in the unknown spectra. An error in the relative intensities will give 
rise to an error in estimated abundance. For example, if an end-member intensity is strong relative to the 
intensity of that component in the mixture undergoing analysis, then the abundance of that component 
will be underestimated because a lower abundance is adequate to match the band strength of the target 
spectrum than is actually present. While significant attention has been paid to determining the optical 
constants of the rock forming minerals within the major mineral classes, especially olivine and pyroxene 
(Trang et al. 2013;  Denevi et al. 2006) little work has been done to calibrate between classes of minerals. 
Furthermore, even within mineral classes there are large discrepancies between optical constant 
intensities derived from sample sets prepared by different investigators. The best documented case was 
presented by Trang et al. (2013) who showed that there is a factor of four discrepancy between the 
derived band intensities using the data of King and Ridley (1987) vs. the data of Sunshine and Pieters 
(1998). Interestingly, Sunshine and Pieters (1998) analyzed both of these data sets using MGM, and 
found they were completely consistent with respect to the absorption band parameters width and center, 
and even the relative intensities of the olivine bands. However, Trang et al. (2013) showed that the King 
and Ridley (1987) data are systematically lower in albedo, and exhibit systematically stronger absorption 
bands than the data presented by Sunshine and Pieters (1998). Because the optical constants are derived 
from reflectance spectra using a model that does not include the unknown cause of this difference, the 
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estimated optical constants also contain the corresponding uncertainty in intensity. While the existing 
optical constants are a starting point in understanding the composition of an unknown spectrum, with 
testing and validation data the accuracy can be improved by pinning the relative intensities of the end-
members to ground truth. The data set of the LSCC is that ground truth for lunar spectral studies. 

In addition to intensities, the radiative transfer model should also obey observed spectral trends in the 
validation data set. We find that forward modeling of the LSCC compositions using (using the LSCC 
compositions as inputs to compute a reflectance spectrum) produces a set of spectra that do not match the 
observed trend of band minimum vs. the ratio of low Ca to total pyroxene (Fig. A2) indicating that the 
low-Ca pyroxene end-member exhibits a band center that is too long in wavelength, and the high-Ca 
pyroxene end-member exhibits a band center that is too short in wavelength. 

For these reasons, to improve the estimation of abundance as characterized by the performance of the 
algorithm against the LSCC data, we elected to treat the band intensities of the four minerals as free 
parameters in an optimization. To ameliorate the trend problem shown in Figure A2, we also allowed the 
pyroxene optical constants to “float” in wavelength. We performed a high-fidelity grid search of space 
defined by the 6 parameters adjusted. We found the best performance with a shift of the low Ca-pyroxene 
imaginary index spectrum of Lucey (1998) (computed at an Mg-number of 65) by 12.5 nm to shorter 
wavelengths, and the high-Ca pyroxene imaginary index spectrum by 50 nm to longer wavelengths, in 
increase in intensity of the olivine imaginary index spectrum by a factor of seven, and that of plagioclase 
by a factor of two gave rise to this improvement. The intensities of the imaginary index spectra of the two 
pyroxenes remained unchanged. 

A factor of seven in intensity increase in the olivine intensity (relative to pyroxene) may seem 
extremely large, however, note Trang et al. (2013) documented a factor of four difference in absorption 
intensity within reported olivine spectra. Furthermore, the olivine was computed at an Mg-number of 65, 
while the LSCC average olivine composition is somewhat less magnesian. Finally, the fits may be 
compensating for a systematic difference between the olivine and pyroxene in ways not accounted for in 
the model, for example surface texture or internal scattering that can affect the reflectance spectrum. 

The result of this optimization was a significant improvement in performance as shown in Figure 8 
(main text). The mean error in mineral estimation is 8%, down from the 25% using the original values. 
Olivine and high-Ca pyroxene are no longer grossly overestimated, and plagioclase shows better 
correlation. Turning back to the trend of band minimum vs. low-Ca pyroxene over total pyroxene, 
forward modeled spectra of the LSCC compositions are much more consistent with the LSCC data than 
the previous effort (though not exact) (Fig. A3). The ability of the model to retrieve the LSCC 
abundances with <10% error is similar to the formal error in extraction of Mars compositions from TES 
data (Hamilton and Christensen 2000). 
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Figure A1.  Correlation of measured and 
modeled LSCC soil mineralogy using the 
algorithm described.  Green: olivine; red, high 
Ca pyroxene; blue, low Ca pyroxene; black 
circles, feldspar
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Figure A2.  Black squares are the LSCC soils 
with a regression fit to the data.  The 
diamonds are the locations of spectra 
computed using the spectral model employing 
the Lucey 1998 optical constants. The 
difference in trends is an important contributor 
to the error in prediction of modal mineralogy
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Figure A3.  Black squares are the LSCC soils 
with a regression fit to the data.  The 
diamonds are the locations of spectra 
computed using the spectral model employing 
the modified optical constants produced for 
this project. There is much better overlap 
between the predicted and measured spectra, 
and the trends produced by the two data sets.
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