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REVIEW OF THERMODYNAMIC DATA FOR DIAMOND AND GRAPHITE 
 
 This appendix provides additional detail to support the choice of thermodynamic and 
thermophysical data summarized in Table 2.  Several tables are included that illustrate the 
trail of citations leading to primary data.  In a few cases, a cited reference could not be 
located despite the best efforts of professional reference librarians.   
Entropy  
 Graphite.  So(298.15) = 5.74 ± 0.21 J/mol•K.  DeSorbo and Tyler (1953) reported 
So(298.16) = 5.74 ± 0.02 J/mol•K, based on heat capacities measured in the range 13-300 
K.  Modern compilations of the third law entropy of graphite depend heavily on these 
measurements, and report selected values that are indistinguishable from their value, 
within uncertainty (Table A1; Cox et al., 1971, 1989; Hultgren et al., 1973; Robie et al., 
1978; Chase et al., 1982; Robie and Hemingway, 1995; Chase, 1998).  Hultgren et al. 
(1973) selected a slightly lower value of 5.73 ± 0.04 J/mol•K based on their independent 
analysis of a larger body heat capacity determinations (Jacobs and Parks,1934; DeSorbo 
and Tyler,1953; Keesom and Pearlman,1955; DeSorbo and Nichols, 1958; van der 
Hoevan and Keesom, 1963).  Holland and Powell (1998) accepted a value of 5.85 
J/mol•K that had been adjusted, presumably on the basis of their analysis of several 
mineral equilibria. 
 Estimates of the uncertainty in the entropy of graphite differ by an order of 
magnitude.  Based on their own measurements, DeSorbo and Tyler (1953) reported ± 
0.02 J/mol•K.  Hultgren et al. (1973) reported ± 0.04 J/mol•K, based on their smoothing 
of data from several sources.  Cox et al. (1971, 1989) estimated about ± 0.1 J/mol•K, 
presumably because of the observed variations among samples (DeSorbo, 1955a,b).  
Chase et al. (1998) reported So(298.15) = 5.74 J/mol•K, based on the CODATA value ( 
Cox et al., 1971), but suggested that the uncertainty should be expanded  to ± 0.21 
J/mol•K because of the variation in specific heat determinations among various samples 
of graphite.  This uncertainty is an order of magnitude larger than originally reported by 
DeSorbo and Tyler (1953), and twice the uncertainty reported in other compilations, 
which already account for some variation among specimens.  Nevertheless, the most 
conservative choice is to assign So(298.15) = 5.74 ± 0.21 J/mol•K. 
 Diamond.  So (298.15) = 2.38 ± 0.04 J/mol•K.  DeSorbo (1953b) reported So 
(298.16) =  2.38 ± 0.02 J/mol•K and all subsequent compilations appear to accept a 
similar value (Table A2).  Robie et al. (1978) cite Hultgren et al. (1973) who report that 
the selected low temperature Cp values agree with the measurements of Desnoyers and 
Morrison (1958) and DeSorbo (1953), but are about 2%-3% lower than the values of 
earlier workers. 



 The estimates of uncertainty in the selected values differ by an order of magnitude.  
DeSorbo (1953) reported ± 0.02 J/mol•K, based on his own measurements.  Hultgren et 
al. (1973) reported a larger uncertainty (± 0.04 J/mol•K), presumably because they 
smoothed a larger body of data.  The origins of the larger uncertainties reported by Robie 
et al. (1978) and Robie and Hemingway (1995) are unclear because the references they 
cite report different values. 
 Choosing So (298.15) = 2.38 ± 0.04 J/mol•K appears to encompass reasonable 
variations in the existing data for diamond.  The entropy change of the diamond to 
graphite transition, therefore is estimated as ΔSo (298.15) = 3.36 ± 0.21 J/mol•K 
Enthalpy of formation from the elements 
 Graphite. 

 

!Hf

o
(298,1)= 0.  Graphite is the reference state for carbon at 298.15 K.   

 Diamond. 

 

!Hf

o
(298,1) = 1872 ± 74 J/ mol.  Currently accepted values for the 

enthalpy of formation depend heavily on the analysis the heats of combustion of graphite 
and diamond determined in the 1940's (TableA2).  Prosen et al. (1944) believed that the 
best value for the graphite-diamond transition should be based on the experiments of 
Jessup (1938), in which the same calorimeter was used to measure the heats of 
combustion of both phases, 

 

!Hf

o
(298.16,1)= 1896 ± 85 J/mol.  These early values may 

require minor adjustments for the standard state temperature, atomic weight of carbon, 
and the value of the international joule.  Hawtin et al. (1966) re-determined the heats of 
combustion, leading to a similar value for the heat of formation of diamond, 

 

!Hf

o
(298,1) 

= 1872 ± 74 J/mol.  Most compilations appear to have made minor corrections of the 
Prosen et al. (1944) value and to have accepted it without comment. 
 The heat of transition is the difference between two large heats of combustion (~400 
kJ) and the large uncertainties reflect this fact.  The uncertainty accepted here is that 
reported by Hawtin et al. (1966).  It is unclear why most previous compilers do not prefer 
the results of Hawtin et al. (1966).  Although the results of the two studies cannot be 
distinguished within uncertainty, the results of Hawtin et al. (1966) are accepted here 
because the uncertainties are somewhat smaller. 
 
High temperature heat capacity 
 Graphite.  The high temperature heat capacity of graphite has been difficult to 
determine, and controversy exists whether differences among samples or experimental 
methods are more important sources of uncertainty (Table A1).  The compilations of 
Chase (1998) and Chase et al. (1982) used here are virtually identical and depend on 
values reported by MacDonald (1965; 341-1723 K) and West and Isihara (1965; 1200 - 
2600 K), which were determined by adiabatic and drop calorimetry, and by Cezairliyan 
(1973) and Cezairliyan and Righini (1975; 1500-3000 K), who used rapid, pulse heating 
techniques.  Up to 1300 K, the selected values agree equally well with MacDonald (1965) 
and West and Ishihara (1965) (Fig. A1).  In the range 1300-1900 K, the selected values 
agree best with West and Ishihara (1965) and at higher temperatures, with the data of 
Cezairliyan and Righini (1975) for so-called POCO graphite.  Pyrolitic graphite 
determined by the same method yielded lower heat capacities (Cezairliyan and 
Righini,1975) (Fig. A1).  Chase (1998) updated the compilation in 1983, and cited 
Cezairliyan, personal communication, as one source of data.  Consequently, it is unclear 



whether the preliminary results of Cezairliyan and Miiller (1985, 1500-3000 K) were 
incorporated in the evaluation.  
 The heat capacity function reported by Gustafson (1986) (Table A3) matches the 
selected values to within ± 0.06 J/K up to at least 3000 K (Fig. A2, A3).  Other functions 
are less useful. The polynomial used by Robie  and  Hemingway (1995) reproduces the 
values selected by Chase (1998) to within ± 0.07 J/K up to 2500 K, but cannot be 
extrapolated to higher temperatures.  The function reported by Holland and Powell 
(1998) is unsuitable because it cannot be extrapolated reliably above about 1200 K.  At 
1300 K and above, the function yields heat capacities that are systematically lower than 
the selected values (Fig. A3), reaching maximum values near 2000 K, above which the 
calculated values decline markedly (Fig. A2).  The source of this discrepancy is unclear 
as the trail of references cited leads back to the heat capacities of Cox et al. (1989) and 
Chase et al.  (1982), which are virtually identical to those of Chase (1998) (Table A1).  
Hultgren et al. (1973) based their compilation on an older compilation by Evans (1960) 
that contains no references to primary data.  The Hultgren compilation gives heat 
capacities above 1300 K that are systematically lower than the more recent experimental 
determinations by 2-5% (Fig. A2) 
 The uncertainties reported by McDonald (1965) and West and Ishihara (1965) 
suggest that the smoothed heat capacities fit the raw data within a few tenths of one per 
cent.  Cezairliyan and Righini (1975) and Cezairliyan  and  Miiller(1985) suggest that the 
errors in the data acquired by pulse heating are about 3%.   The Gustafson function 
(1986) reproduces the selected values of Chase et al. (1998) with an average deviation of 
0.12% and a maximum deviation of 0.06 J/mol•K, over the temperature range from 298 – 
3000 K.  
 Diamond.  Compilations of the high temperature heat capacities of diamond depend 
heavily on the measurements reported by Victor (1962; 273 - 1073 K) (Table A2).  The 
smoothing function he used to describe his data is not suitable for extrapolation to higher 
temperatures (Table A3; Fig. A4).   Robie et al. (1978) and Robie and Hemingway (1995) 
reported essentially identical heat capacity functions that depend ultimately on 
measurements reported by Victor (1962).  Although they describe Victor’s smoothed heat 
capacity values well (Fig. A5), they should not be extrapolated above the temperature 
range of the data (Fig. A4).   The four-term polynomial used by Holland and Powell 
(1998) shows the least satisfactory fit to the smoothed data (Victor, 1962) (Fig. A5) and 
appears to extrapolate indefinitely to higher heat capacities with increasing temperature 
(Fig. A4). 
 Several estimates of the high temperature heat capacity based on Victor’s (1962) 
measurements extrapolate appropriately to higher temperatures (Fig. A4).  Gustafson 
(1986) used a five-term polynomial that yields values systematically lower than the data 
above 600 K (Table A5; Fig. A5), but extrapolates smoothly to higher temperatures (Fig. 
A4).  Reeber and Wang (1996) reported recommended values of the isochoric specific 
heat from 50 - 3000K.  The heat capacity values were calculated by fitting a three-
frequency Einstein model to the existing data (Rossini and Jessup, 1938; Pitzer, 1938; 
DeSorbo, 1953; Desnoyers and Morrison, 1958; Victor, 1962).  Isobaric heat capacity 
was calculated in this study using the relation Cp - Cv = α2•Β•V•T, the recommended 
values of molar volume and thermal expansion (Reeber  and Wang, 1996), and two 
constant limiting values of bulk modulus of 5560 kbar or 4400 kbar.  The derived heat 



capacities fit the smoothed data (Victor, 1962) very well up to 1000 K and extrapolate to 
higher temperatures in much the same way as Gustafson’s treatment (Fig. A4).  
 The independent review of Reeber and Wang (1996) corroborates the extrapolation 
proposed by Gustafson (1986) and his function was used for all calculations.  It is 
unfortunate that Reeber and Wang did not report their fitting function for the heat 
capacity because their calculations fit Victor’s (1966) data quite well.  The function 
proposed by Glushko et al. (1979) further supports the extrapolation by Gustafson (1986), 
although their function becomes inappropriate at the highest temperatures (Fig. A4). 
 The average standard deviation of the heat capacity determinations over the 
temperature range of Victor’s (1962) experiments is 0.4%, including the fit to his 
smoothing function.   The 2σ uncertainty envelope is  ±0.04 J/K at 298 K and  ±0.18 J/K 
at 1000 K. 
 The choice of Gustafson’s (1986) heat capacity functions for diamond and 
graphite is supported further by the fact that ΔCp for the reaction asymptotically 
approaches zero at high temperatures, as expected (e.g. Berman and Simon, 1955).  
On the other hand, ΔCp based on Holland and Powell’s (1998) functions decreases 
indefinitely at high temperatures. 
Molar Volume  
 Graphite. V(298.15) = 5.300 ± 0.001 cm3/mol.  All sources consulted lead back to 
the cell dimensions determined by Nelson and Riley (1945) at 15oC, sometimes modified 
by the observations of Bacon (1950) (Table A4).  Robie et al. (1967) calculated the molar 
volume using older values for Avogadro’s number and the conversion from kX units to 
Angström units.  Adjusting to modern values (Cohen and Taylor; 1987; Mohr et al., 
2008) and allowing for thermal expansion yields 5.300 ± 0.001 cm3/mol at 298.15 K. 
 Diamond.  V(298.15) = 3.4166 ± 0.0003  cm3/mol.  Most workers have chosen a 
value of the molar volume in the range 3.417± 0.001 cm3 (Table A5).  The value 
accepted here was calculated using the preferred unit cell dimension (a = 3.56705 ± 
0.00005 Å (1 σ) ) reported in the critical survey of Reeber and Wang (1996, Table 1) and 
the value of Avogadro’s number used by Robie and Hemingway (1995; 6.022137 E+23, 
Cohen and Taylor, 1987).  The preferred unit cell dimension appears to be the mean 
value of five studies of very high or gem quality diamond (Tu, 1932; Straumanis and 
Aka, 1951; Thewlis and Davey, 1956; Skinner, 1957; Hom et al., 1975).  Lower quality 
and synthetic diamonds have a slightly larger mean unit cell dimension and molar volume 
(3.4168 cm3/mol) that are within uncertainty of the preferred value.  
 The accepted molar volume agrees well with previous reports (Berman and Simon, 
1955; Berman, 1965,1979; Robie et al., 1967).  However, variations in the values of 
Avogadro’s number used by various authors may create differences in the fourth 
significant digit.  For example, the slightly larger molar volume preferred by Reeber and 
Wang (1996, Table 4, 3.41706 cm3/mol) implies a value of Avogadro’s number 
(6.023050E+23) from an unknown source.  It seems unlikely that the uncertainty is in the 
third significant digit, as implied by Holland and Powell (1998). 
Bulk Modulus  
 Graphite.   Β 0 = 338 kbar; n = 8.9.  Hanfland et al. (1989) derived values of Bo and n 
(

 

= !B !P)
T

) in the Murnaghan (1944) equation of state that are provisionally accepted 
here (Table A4).  The compression data from which the values were derived were 



measured in a diamond-anvil cell at pressures ranging from 20 – 140 kbar, using the ruby 
fluorescence pressure scale of Mao et al. (1978). 
 Three older bodies of experimental data have also been used to determine values of 
Bo and n.  Lynch and Drickamer (1966) reported the compression of graphite from 8-168 
kbar from which Drickamer et al. (1966) derived values of Bo and n (337 kbar, 12.2) (Fig. 
A6). They noted that the lower pressure region is better fit by a value of n about 9.0, 
similar to the value determined by Hanfland et al. (1989).  Birch (1966) relied on early 
experiments by Richardson (1915) to choose a comparable value of Bo (333 kbar).  
Berman (1965) derived a somewhat higher value of Bo (379 kbar) from the data of 
Bridgeman (1945,1948), which nevertheless appear to be compatible with the Lynch and 
Drickamer data. 
 Both Drickamer et al. (1966) and Gustafson (1986) derived parameters that pass 
curves comfortably through the scatter of the experimental data (Bridgeman, 1945, 1948; 
Lynch and Drickamer, 1966).  However, the Gustafson parameters (Β0 = 333 kbar; n = 
12) fit the data slightly better (sum of squared deviations is 9% lower) than those reported 
by Drickamer et al. (1966). The values proposed by Holland and Powell (1998), based on 
Birch (1966) yield compressions that deviate significantly from these experimental data 
at high pressures.  The data of Hanfland et al. (1996) pass just outside a reasonable error 
envelope around the scatter of Lynch and Drickamer’s (1966) data (Fig. A6). 
 The values reported by Hanfland et al. (1989) yield pressures that are about twenty 
kbar lower than the Lynchand Drickamer data for a compression of 0.88.  Hanfland et al. 
(1986) suggested that part of this difference results from using different pressures scales.  
However, it appears that only about eight kbar of the discrepancy can be attributed to the 
differences in pressure scales at 100 kbar.  Lynch and Drickamer (1966) appear to have 
used a scale primarily based on a previously determined compression of MgO (Perez-
Albuerne and Drickamer, 1965), which yields pressures about seven kbar higher than the 
most recent determinations (Zha et al., 2000).  Hanfland et al. (1986) used the ruby 
fluorescence scale of Mao et al. (1978), which yields pressures about 1 kbar lower than 
the  new calibration (Zha et al., 2000).  Thus, only eight kbar of the observed difference 
between the two data sets can be attributed to differences in the pressure scale.   
 Differences in the degree of non-hydrostatic pressures during the experiments might 
also contribute to systematic differences between the two bodies of data.  Zha et al. 
(2000) demonstrated that significantly higher pressures may be required to produce a 
given compression in a non-hydrostatic medium.  This observation may help explain the 
higher pressures observed in the Lynch and Drickamer (1966) experiments (Fig. A6).  
Although it is known that graphite begins to transform to another phase at pressures 
higher than 140 kbar (Hanfland et al., 1989, and references therein), there is no evidence 
for a change in slope of the compression data that might support such a change in the 
Lynch and Drickamer (1966) data. 
 An uncertainty of ± 30 kbar in the initial bulk modulus encompasses the range of 
values used by various authors and an uncertainty of ± 2 in the value of n would permit a 
scatter of data similar to that in the Lynch and Drickamer (1966) data and much larger 
than that illustrated by Hanfland et al. (1989). 
 Diamond.  Β 0 = 4460 (10) kbar; n = 3.2.  Values of the initial bulk modulus adopted 
for diamond range from about 4400 kbar to 6250 kbar (Table A5).  However, because the 



bulk modulus of diamond is so high, this range of values produces differences in ∫VdP of 
only about 100 J at 100 kbar.  
 Adams (1921) and Adams and Williamson(1923) did pioneering work on the 
compression of diamond up to 12 kbar, and Lynch and Drickamer (1966) reported a 
comprehensive set of experimental data (68 – 260 kbar).  They showed that the 
compression of the unit cell dimension  (a/ao) is linear with pressure over the range of 
their experiments and suggested that the initial bulk modulus is 6250 kbar .  Several 
authors used Murnaghan (1944) equations of state that produce values of V/Vo that fit 
comfortably within the scatter of Lynch and Drickamer’s data (Drickamer et al., 1966; 
Gustafson, 1986; Holland and Powell, 1998).   However, the values of B0 and n (5560 
kbar; 4) from Drickamer et al. (1966) yield a better fit (sum of squared deviations) to 
Lynch and Drickamer’s data.  
 Generally lower values of the initial bulk modulus are found from measurements of 
the elastic constants by Brillouin scattering and ultrasonic methods (4423-5867 kbar; 
Grimsditch, 2000; see also Aleksandrov et al., 1987)).  Occelli et al. (2003) used direct 
compression in a diamond anvil cell under hydrostatic pressures up to 1400 kbar, a 
synchrotron source, and energy dispersive x-ray diffraction to determine B0 = 4460(10) 
kbar and n= 3.0(1) using the Vinet equation of state.  Using the Murnaghan equation of 
state, their compression data were best fit by about n=3.2 (Occelli et al., 2003).  The 
direct determinations of Occelli et al. (2003) agree broadly with and confirm the lower 
values of bulk modulus determined by Brillouin scattering and ultrasonic methods. Their 
values of B0 and n yield compressions that pass just outside the scatter of Lynch and 
Drickamer’s (1966) data.  As discussed for graphite, generally less than half of the 
pressure differences between the two kinds of data can be explained by differences in the 
pressure scales used by the authors.   
 An uncertainty of +1000/-500 kbar in the initial bulk modulus encompasses the range 
of values used by various authors.  The calculated values of compression are relatively 
insensitive to the value of n; an assumed uncertainty of 100% would permit a scatter of 
data similar to that in the Lynch and Drickamer (1966) data and much larger than that 
illustrated by Occelli et al. (2003).  Consequently, an uncertainty of ± 1 was assumed 
(Table 2).  
Temperature Dependence of Bulk Modulus  

The temperature dependences of the bulk moduli of graphite and diamond are 
poorly known and a simple empirical approach was adopted.  Based on their studies of 
silicate minerals, Holland et al. (1996) proposed estimating the bulk modulus at high 
temperatures according to 
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, where a0 is a parameter used to estimate 
the coefficient of thermal expansion.  The method is based on the approximations that B T 
is linear in temperature and 
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 is proportional to -αB0, so that 
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 is a 
constant.  Although it is known that 
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 is a function of temperature (e.g. Zouboulis 
et al., 1998; Mounet and Mazario, 2005), the linear approximation introduces errors much 
smaller than the large uncertainties in B0.  
 Graphite. 

 

!B !T)P  = - 0.07 ± 0.02  (kbar/K).  There appear to be no direct 
measurements of the temperature dependence of bulk modulus for graphite.  Mounet and 
Mazario (2005) used ab initio calculations to calculate the elastic constants as a function 
of pressure.  Their calculated temperature dependence of B (Mounet and Mazario, 2005, 
Fig 21) can be approximated reasonably well as 
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 =  - 0.094  (kbar/K).  Using the 



method proposed by Holland et al. (1996), the value of a0 reported by Holland and 
Powell (1998), and B0 from Table 2, 
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 =  - 0.048.  As neither method is 
constrained by actual measurements, the mean of the two estimates was chosen. The 
assigned uncertainty encompasses the range of the two estimates. 
 Diamond. 

 

!B !T)P  =  - 0.3 ± 0.1  (kbar/K).  Zouboulis et al. (1998) used Brillouin 
scattering to measured the elastic constants of diamond from 300 -1600 K.  Over that 
temperature range, the average slope is approximated by 
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 = - 0.228  (kbar/K).  
Mounet and Mazari (2005) calculated a temperature dependence that can be 
approximated as 
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 =  - 0.276  (kbar/K).  Using the method proposed by Holland et 
al. (1996), the value of a0 reported by Holland and Powell (1998), and B0 from Table 2, 
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 - 0.275(kbar/K).   Because the calculated temperature dependence becomes 
increasingly negative with increasing temperature (Mounet and Mazari, 2005, Fig. 20), it 
seems likely that the average slope over the interval 300 – 3000K should be more 
negative than that measured by Zouboulis et al. (1998).   In fact, if their smoothing 
function is extrapolated to 3000 K, the average slope becomes - 0.396 (kbar/K).  A slope 
of 

 

!B !T)P  =  - 0.3 ± 0.1  (kbar/K) includes all these possibilities. 
Thermal Expansion  
 Graphite.  The expression for thermal expansion of graphite given by Holland and 
Powell (1998) was used in this study.  Nelson and Riley (1945) measured the thermal 
expansion of natural Ceylon graphite up to 1073 K and Holland and Powell (1998) fitted 
those measurements to a simple function in the square root of temperature (Fig. A8).  
Touloukian et. al  (1977, p. 79-80) summarized numerous measurements of the linear 
expansion of synthetic “pyrolitic graphite” in the range 300 – 3400 K as third-order 
polynomials in temperature.  Gustafson (1986) refit the smoothed data of Touloukian et 
al. with a function that reproduces the smoothed data within about 0.1 % or less (Fig. 
A8).  Although the Gustafson function is based on measurements over a wide 
temperature range, the form of the function requires that the volume coefficient of 
thermal expansion is a linear function of temperature (Fig A9), and it is unclear whether 
this synthetic graphite is an appropriate analogue for natural graphite.  The function of 
Holland and Powell (1998) has a more appropriate form, at high temperatures, and fits 
the data for natural graphite better than either of the functions based on pyrolitic graphite 
(sum of squared deviations).   Consequently, the Holland and Powell function was 
accepted. 
 Diamond.   Among several available descriptions, the treatment of the thermal 
expansion of diamond by Reeber and Wang (1996) is the most appropriate for our 
purposes.  They conducted a careful review of the molar volume and thermal expansion 
of diamond and fitted selected data to a quasi-harmonic model with six adjustable 
parameters: 
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where VT is the volume at the temperature of interest, V0 is volume at zero Kelvin, and Xi 
and θi are adjustable parameters.  They fitted only data from gem quality and synthetic 



diamond (Straumanis and Aka, 1951; Thewlis and Davey, 1956; Skinner, 1957; Haruna 
et al., 1992; Pickrell et al., 1994). 
 The molar volume of diamond is constrained by measurements only at temperatures 
below 2000 oC.  Above that temperature, the functions used by various authors 
extrapolate differently (Fig. A10; Touloukian et al., 1977; Gustafson, 1986; Reeber and 
Wang, 1996; Holland and Powell, 1998).  The function used by Touloukian et al. (1977) 
requires a thermal maximum in the thermal expansion coefficient at about 2000 K and is 
not suitable to be extrapolated to high temperature (Fig. A11).  The Gustafson (1986) 
function also is not suitable for extrapolation as it assumes linear variation of the thermal 
expansion coefficient with temperature.  The function used by Holland and Powell (1998) 
yields a distinctly lower slope of V/V0 vs. T (Fig. A10) and is not appropriate for 
extrapolation of the coefficient of thermal expansion to low temperatures. The function 
proposed by Reeber and Wang (1996) is preferred because it fits the data well at both 
high and low temperatures (Reeber and Wang, 1996, Fig. 2), it extrapolates smoothly to 
intermediate values of molar volume at high temperature (Fig. A10) and has the 
appropriate thermodynamic form at both high and low temperature (Fig. A11). 
 


