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Appendix 1. Theoretical background of reaction modeling

Minimization of Gibbs free energy
For an arbitrary function f(xi) (i = 1,...,n) which is to be minimized under constraints

gj(xi) = 0 (j = 1,..,m), one has to solve the m + n equations ∂f/∂xi - ∑j (λj ⋅ ∂gj / ∂xi) = 0 and
gj(xi) = 0 for xi and λj simultaneously. The λj are the so called Lagrangian multipliers. For our
purposes, the Gibbs free energy G(np

i) (where np
i is the molar abundance of chemical species i

in phase p) is to be minimized and the constraints are that mass balance for each element of a
closed system must be maintained. So we obtain ∂G / ∂np

i - Σj (λj ⋅ Apji) = µp
i - Σj (λj ⋅ Apji) = 0

(where Apji is the stoichiometric coefficient of element j in chemical species i of phase p) plus
the mass balance constraints as the system of equations to be solved. We use the notation µp

i

for the molar Gibbs free energy of component i in phase p which is equal to µ°i(P, T) + R ⋅ T ⋅
ln(ai) where µ°i(P, T) is the Standard Gibbs free energy of the pure phase at temperature and
pressure of interest and ai is the activity of component i in phase p. For the gas phase
components assuming an ideal gas one can write:
µg

i = µ°i(1 bar, T) + R ⋅ T ⋅ ln(R T / Vg) + R ⋅ T ⋅ ln(ng
i) (A1)

with ni is the number of moles of gas component i and Vg is the total gas volume. For every
component of every phase there is an equation of the form µg

FeO - λFe - λO = 0.
Equation system

Using these, we obtain the following system of equations for the calculation in a
closed system with vapor, iron, magnesiowuestite and olivine:
Gas-phase
µg

Mg - λMg = 0 (A2)
µg

MgO - λMg - λO = 0 (A3)
µg

Si - λSi = 0 (A4)
µg

SiO - λSi - λO = 0                                                                                                                (A5)
µg

SiO2 - λSi - 2 ⋅ λO = 0 (A6)
µg

Fe - λFe = 0 (A7)
µg

FeO - λFe - λO = 0 (A8)
µg

O2 - 2 ⋅ λO = 0 (A9)
µg

O - λO = 0 (A10)
Iron metal
µm

Fe - λFe = 0            (A11)
Magnesiowüstite
µWus

FeO - λFe - λO = 0 (A12)
µWus

MgO - λMg - λO = 0 (A13)
µWus

Fe2/3O - 2/3 ⋅ λFe - λO = 0 (A14)
Olivine
µOl

Fa - λFe - 0.5 ⋅ λSi –2 ⋅ λO = 0 (A15)
µOl

Fo - λMg - 0.5 ⋅ λSi –2 ⋅ λO = 0 (A16)
Mass balance constraints for the elements
 Mg, Si, O, and Fe:ng

Mg + ng
MgO + xFo ⋅ nOl + xWus

MgO ⋅ nwue = n0
Mg             (A17)

ng
Si + ng

SiO + ng
SiO2 + 0.5 ⋅ nOl = n0

Si (A18)
ng

O + 2 ng
O2 + ng

MgO + (xWus
FeO + xWus

Fe2/3O)  nWus + ng
FeO + ng

SiO + 2 ng
SiO2 + 2 nOl = n0

O (A19)
ng

Fe + ng
FeO + (2/3 ⋅ xWus

Fe2/3O + xWus
FeO) ⋅ nWus + nm

Fe + xFa ⋅ nOl = n0
Fe (A20)
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Further we have xFa = 1 - xFo for olivine and xWus
Fe2/3O = 0.0375 ⋅ xWus

Fe – 0.1008 ⋅ (xWus
Fe)

2 +
0.2155 ⋅ (xWus

Fe)
3, xWus

MgO = 1 - xWus
Fe, and xWus

FeO = xWus
Fe – 2/3 ⋅ xWus

Fe2/3O for wuestite
[Srecec et al. (1987)] with xWus

Fe = nWus
Fe / (n

Wus
Fe + nWus

Mg). Thus, we get a set of 18
equations that are to be solved simultaneously for the 18 variables λMg, λSi, λFe, λO, ng

Mg,
ng

MgO, ng
Si, n

g
SiO, ng

SiO2, n
g

Fe, n
g

FeO, ng
O2, n

g
O, nm

Fe, nWue, nOl, xFa, and xwue
Fe.

Numerical examples
To vary the initial amounts of the basic elements Mg, Fe, Si, and O, we have the

freedom to choose various initial amounts of olivine and  iron. We have chosen them such as
to best reflect the reactive surface area of olivine in a Knudsen-cell experiment and that at all
“transport” steps there is enough iron to saturate the iron partial pressure. A simple calculation
shows that if we use 1.4 mg of forsterite we get depending on grain sizes of 3, 30, 300, and
3000 µm approximately 10-8, 10-9, 10-10, and 10-11 mol of forsterite on grain surfaces.

This system should roughly correspond to the experiments without any fO2-buffer
where the metallic iron is oxidized to magnesiowüstite during the course of the reaction. The
nonlinear system of equations was solved by a computer program based on the Newton-
Raphson iteration algorithm. Appendix Table 1 presents examples for the first reaction step in
the system for T=1700 K, V=1 cm3, 10-7 mol Fe, and various initial amounts of nearly pure
forsterite (xFa = 10-5 mol%), i.e., various grain sizes.

Appendix Table 1. Numerical results for a first “reaction” step

Initial forsterite
(grain size)

10-8 mol
(3 mm)

10-9 mol
(30 mm)

10-10 mol
(300 mm)

10-11 mol
(3000 mm)

xFa (mol%) 1.14 3.52 9.71 12.17
nOl (mol) 9.99e-09 9.95e-10 9.46e-11 4.35e-12
nm

Fe (mol) 9.95e-08 9.95e-08 9.95e-08 9.95e-08
nWue (mol) 1.68e-11 7.13e-12 6.76e-12 8.26e-12
xFeO (mol%) 6.37 21.16 58.87 68.36
PFe (bar) 6.34e-06 6.34e-06 6.34e-06 6.34e-06
PFeO (bar) 3.36e-09 9.26e-09 1.80e-08 1.97e-08
PMg (bar) 1.55e-06 4.89e-07 1.66e-07 1.29e-07
PMgO (bar) 1.03e-09 8.96e-10 5.92e-10 5.03e-10
PO2 (bar) 1.42e-12 1.08e-11 4.07e-11 4.87e-11
PO (bar) 5.26e-11 1.45e-10 2.81e-10 3.08e-10
PSi (bar) 2.87e-15 4.78e-16 2.53e-16 2.77e-16
PSiO (bar) 8.09e-08 3.70e-08 3.81e-08 4.57e-08
PSiO2 (bar) 9.74e-12 1.23e-11 2.46e-11 3.23e-11


