Ab initio calculation of the pleochroism of fayalite

O.V. KRASOVSKA,^{1,2} B. WINKLER,¹ E.E. KRASOVSKII,² A.N. YARESKO,² V.N. ANTONOV,² and N. LANGER³

¹Mineralogisch-Petrographisches Institut der Christian-Albrechts Universität, Olshausenstrasse 40, D-24098 Kiel, Germany ²Institute of Metal Physics, National Academy of Sciences of Ukraine, Vernadskogo 36, 252680, Kiev-142, Ukraine ³Mineralogisches Institut, Technical University of Berlin, Ernst Reuter Platz 1, D-10587 Berlin, Germany

Abstract

Optical properties of fayalite, Fe_2SiO_4 , have been obtained from ab initio calculations on the basis of the self-consistent energy band structure. The semi-relativistic, extended linear-augmented plane wave method (ELAPW) was used. Comparison of the calculated polarized optical spectra with experimental absorbance spectra shows satisfactory agreement. This observation allows a semiquantitative interpretation of the origins of the observed d-d transitions. Energy level diagrams for Fe^{2+} ions in the M1 and M2 sites have been constructed using the X α -scattered waves cluster method. These calculations quantitatively justify the use of the relationship $\Delta E \propto 1/R^5$, which is often used for the derivation of crystal-field stabilization energies at high pressures.