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ABSTRACT

We have measured multicomponent chemical diffusion coefficients in a melt near to the
low pressure water-saturated eutectic granite composition in the system K2O-Na2O-Al2O3-
SiO2-H2O at 1.0 GPa and temperatures of 1300 and 1600 8C. The measured diffusion
profiles can be accounted for within the analytical error by diffusion coefficients, which
are not dependent on composition within the range of compositions accessed by our ex-
periments. The multicomponent diffusion coefficient matrix [D] has a highly degenerate
set of real, positive eigenvalues that show a regular relation to melt viscosity on an Ar-
rhenius diagram. The smallest eigenvalue is that associated predominantly with Si-Al ex-
change. The larger two eigenvalues are those associated with Si-Na and Si-K exchange
and are effectively degenerate, with the result that exchanges of alkalis for silica or for
each other can proceed in pseudo-binary fashion without inducing fluxes of other com-
ponents. The eigenvalue associated with H-Si exchange is smaller than the alkali-silica
eigenvalues, but analytical uncertainties make it also effectively degenerate with the alkalis.
Uphill diffusion, notably of water and alkalis, was observed in several experiments, and
this would lead to transient partitioning of water and alkalis across diffusion interfaces
showing large Al2O3 concentration gradients. Such partitioning in natural systems would
persist until Al concentration gradients were erased by continued, much slower Al-Si
interdiffusion.

INTRODUCTION

The province of igneous petrology is primarily the
study of magmatic processes within and on the surface
of the Earth. Quantitative descriptions of the physical
chemistry of these processes have tended to rely on equi-
librium thermodynamics (e.g., Ghiorso 1987a). Time-de-
pendent processes therefore must be modeled as a series
of discrete time steps, during each of which a system is
assumed to be in a state of equilibrium. Because the as-
sumption of thermodynamic equilibrium requires that not
only the fastest, but also all time-dependent processes go
to completion, it can commonly fail to account for com-
positions and textures observed in natural geological sys-
tems wherein no observable physical state represents a
state of true closed-system equilibrium. In particular, sit-
uations in which some but not all processes go to com-
pletion can lead to serious errors if equilibrium is as-
sumed. It is important to understand the ways that the
processes themselves affect the predictions of the ideal-
ized equilibrium thermodynamics to which most of our
present knowledge pertains and to understand how these
rates of these processes can be described in the context
of thermodynamic theory. For example, nucleation and
growth of crystals from a melt result from a change in
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one of the state variables of a melt system that initially
may have been close to equilibrium (Ghiorso 1987b).
Chemical potential and temperature gradients drive the
irreversible fluxes of chemical components and heat, both
toward and away from the crystal-melt interface. The
study of the thermodynamics of crystal growth therefore
must include a theory of the thermodynamics of irrevers-
ible processes and, by similar arguments, we would sug-
gest that a quantitative thermodynamic description of a
magmatic system is not complete unless it includes a
quantitative description of all of the irreversible processes
that can occur within that system. Macroscopic processes
whose rates, mechanisms, and final compositional states
depend in part on the irreversible process of chemical
diffusion include crystal growth (Ghiorso 1987b), magma
degassing (Sparks et al. 1994), magma mixing, and grav-
itational instability in liquid interfaces (Trial and Spera
1990).

Despite the fact that a vast literature exists devoted to
the quantitative description of irreversible (non-equilib-
rium) thermodynamics (e.g., Haase 1990; Kuiken 1994)
and to potential applications of these principles to sys-
tems of geological interest (Allègre et al. 1981; Lasaga
1982; Fisher and Lasaga 1983; Kirkpatrick 1983; Ghiorso
1987b; Toramaru 1991; Richter 1993; Trial and Spera
1994), large gaps remain in the application of these prin-
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ciples to geology, particularly in the realm of experimen-
tal petrology. In recent years, several papers have ad-
dressed the application of irreversible thermodynamics to
thermal diffusion in natural melts (Ghiorso 1987b; Lesher
and Walker 1991) and to multicomponent diffusion in
simple systems of three or four components (Kubicki et
al. 1990; Kress and Ghiorso 1993; Liang et al. 1996;
Chakraborty et al. 1995a, 1995b). Only one study has
addressed multicomponent diffusion in a natural basaltic
composition, but it did not treat diffusion of all of the
components present in the melt (Kress and Ghiorso
1995). Numerous studies have described diffusion in nat-
ural systems and synthetic analogs (see reviews by Hof-
man 1980 and Chakraborty 1995), almost exclusively in
the form of tracer or self-diffusion coefficients, or as
pseudo-binary chemical diffusivities that generally cannot
be applied to systems outside the specific ones in which
they were measured. Until now, no experimental study
has been published that provides a complete quantitative
thermodynamic description of chemical diffusion in a
multicomponent melt of direct geological relevance.

We therefore began an investigation of chemical dif-
fusion processes in a synthetic melt system having
enough chemical components to be considered a realistic
analog to natural magmas. We chose a five-component
base composition that lies near the water-saturated, low-
pressure eutectic in the system K2O-Na2O-Al2O3-SiO2-
H2O (Tuttle and Bowen 1958). In this paper, we describe
the results of experiments aimed at deriving a quantita-
tive, predictive model for multicomponent diffusion in
melts near the base composition at elevated temperatures
(1300 8C and 1600 8C) and pressure (1.0 GPa).

MULTICOMPONENT DIFFUSION

Background

The general principles necessary for a quantitative
macroscopic description of chemical diffusion in multi-
component melts are well-described elsewhere (e.g., Gup-
ta and Cooper 1971; Kuiken 1994), and we refer the in-
terested reader to these other works. The multicomponent
form of Fick’s first law for a system with n chemical
components in one-dimensional system (all fluxes and
thermodynamic forces in a single direction in space) is
our starting point:

]x
J 5 2r[D] (1)

]y

(See Table 1 for notation). Equation 1 is actually a series
of equations:(n 2 1)

n21 ]xlJ 5 2r D (2)Ok kl ]yl51

which express that the flux of each component depends
linearly through the Dkl on the concentration gradients of
each of the other independent components. We assume
implicitly that the melt components all have the same
partial molar density, an assumption that simplifies the

ensuing calculations with minimal loss of accuracy pro-
vided that we are interested in the molar fluxes rather than
density distributions in the interfacial region. The flux and
concentration of the nth component is dependent on those
of the other (n 2 1) components through closure. Equa-
tion 2 allows for chemical diffusion of a component up
its own concentration gradient (uphill diffusion) for cases
when:

n21]x ]xk lD , D , k ± l (3)Okk kl]y ]yl51

To derive useful information from Equation 1, we seek
analytical solutions giving x as a function of time and
space; the detailed derivation of useful analytical solu-
tions of Equation 1 appears in the Appendix.

Methods of solving for [D] from experimental data
The model equation, A12, permits us to determine the

values of [D] from experimentally measured profiles of
concentration, c(y,t). Data can be gathered in several ways,
but the usual approach to the study of diffusion in silicate
melts is to quench the experimental sample to a glass and
prepare a polished section along a plane cut parallel to
its length. This section then can be studied by techniques
such as electron microprobe analysis (EMPA) or second-
ary ion mass spectrometry (SIMS) to yield empirical val-
ues of c(y,t).

If a diffusion couple is chosen that is parallel to an
eigenvector in composition space, then the couple be-
haves as a binary system and only information regarding
that eigenvector and its eigenvalue can be gleaned from
the diffusion profiles. Trial and Spera (1994) state that if
a diffusion profile appears pseudo-binary then it must lie
along an eigenvector. However, in the case where two or
more eigenvalues are equal within measurement error,
couples in all directions within a plane containing both
eigenvectors will have diffusion profiles that appear bi-
nary. In this case, there are repeated roots of the poly-
nomial in Equation A4 and the eigenvectors cannot be
defined uniquely. One can then choose any convenient
pair of eigenvectors within the plane for modeling pur-
poses. Consequently, systems with degenerate eigenval-
ues cannot be used to calculate a unique [D] and only the
eigenvalues themselves have any meaning as diffusion
coefficients. If the couple does not parallel an eigenvector
and the eigenvalues are not identical, then the diffusion
profiles created within even a single couple, in principle,
should contain sufficient information to constrain [D].
However, as Trial and Spera (1994) have shown, impre-
cision in the analytical data results in enormous uncer-
tainties in [D] matrices that are extracted from single cou-
ples. To be sure that information is obtained on all the
eigenvectors and eigenvalues belonging to [D], the ex-
perimentalist should carry out at least (n 2 1) couple
experiments in a system of (n 2 1) independent compo-
nents, such that the orientation of couples in composition
space is as orthogonal as possible (Trial and Spera 1994).

The values of the diffusion coefficients must be esti-
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mated by comparing the model equation, A12, with the
experimental data. We cannot implement standard inverse
error function models without first knowing the orienta-
tions of the eigenvectors with which [D] must be decou-
pled to give binary interdiffusion profiles. Consequently,
we are forced to use a forward-modeling approach. In a
forward model, we propose an initial form for [D] and
then solve Equation A12 for the appropriate boundary
conditions and experiment durations. The resulting model
diffusion profiles are then compared with the actual data
using a merit function such as x2:

2m n c (y , t ) 2 x (a ; y , t )k l l k l l2x 5 (4)O O 1 2sl51 k51 kl

where ck is the measured mole fraction, xk is the mole
fraction of component k predicted by the model Equation
A12, and skl is the standard deviation in ck at position l.
The vector a in Equation 4 is composed of all eigenvector
elements and eigenvalues combined into one. The chal-
lenge in the forward-modeling approach is to find a way
to improve iteratively the quality of the fit to the data
afforded by a. Elegant numerical methods exist by which
the convergence can be performed with a minimal
amount of guidance from the investigator (e.g., Trial and
Spera 1994; Kress and Ghiorso 1993, 1995). However,
these methods require very time-consuming preparation
of sophisticated computer codes. Much simpler, interac-
tive approaches often can produce equally good results in
less time, and give the investigator an appreciation of the
significance of the various elements of [P] and [L] (see
Appendix). Our approach begins with a computer pro-
gram that implements Equation A12 and estimates good-
ness of fit for all available microprobe data in the system
of interest for a single choice of a. The code then opti-
mizes individual ak one at a time, by determining x2 at
several values of ak distributed around its initial value.
The value of ak yielding the smallest value of x2 is chosen
to replace the initial value, and the process is repeated
for ak11. At the beginning of the process, a is seeded with
elements that give [P] a simple structure (for example:
Pkk 5 1.0, Pkl 5 0.1 for k ± l). We have found, using this
approach interactively, that a complete [D] for a five-
component system can be optimized in a few hours by
one person with a personal computer. Extension of the
iterative forward-modeling approach to systems of more
than five components should be straightforward.

Estimation of errors
The parameters retrieved from the forward modeling

described above have associated errors that are difficult
to estimate by standard methods of error propagation. Tri-
al and Spera (1994) describe the use of Monte Carlo sim-
ulations to find the uncertainties in the elements of [D],
but this method is also cumbersome. Quantitative use of
the [D] in modeling applications relies on the eigenvalues
and eigenvectors through Equation A12. Degeneracy in
the eigenvalues (see results section below) makes it im-
possible to calculate values for [D] even if we possess a

set of eigenvalues and eigenvectors that describes multi-
component diffusion in a given system perfectly. In other
words, the set of uncoupled diffusion coefficients repre-
sented by the eigenvalues is the only set of diffusion co-
efficients we can be sure of being able to use. Because
we do not use the elements of [D] in quantitative appli-
cations, we leave the estimation of errors in the elements
of [D] an open but largely irrelevant question, and focus
on error estimation in the eigen-parameters themselves.
We remind the reader that the eigenvalues of [D] are
themselves the set of diffusion coefficients, which de-
scribe the diffusivities of the components defined by
Equation A6.

A simple and very widely used means of estimating
errors in fit parameters that have been determined through
a x2 analysis is suggested by Press et al. (1992, p. 688).
If the best-fit solution to Equation 4 is the vector a(o), then
a confidence interval for each element of a(o) can be as-
sessed by determining the range of values for each ak

within which the value of x2 does not exceed a limiting
value. For example, if the limiting change in x2 is set at
1.0, considering only one parameter at a time, then the
resulting interval is the 68.3% confidence interval. Sim-
ilarly, the 90% confidence interval is bounded by the lim-
its at which x2 has increased by 2.71 (Press et al. 1992,
p. 692). Covariances between elements of the solution
array a(o) may lead to deviations considerably greater than
would be implied when confidence intervals on individual
elements of a(o) are considered. More elaborate methods
of calculating confidence intervals set stringent require-
ments on the type of statistical distribution of the data
around its mean. Because we do not know the type of
distribution to expect in the elements of [P] and [L], we
cannot justify their use.

EXPERIMENTAL METHODS

The starting materials for our experiments were the
same glasses used to measure water solubility in the hap-
logranite system by Holz et al. (1992) and to measure
viscosities by Hess and Dingwell (1996a). The compo-
sitions measured at the ends of the experimental products
are listed in Table 2. The glasses were prepared by fusing
100 g mixtures of oxide and carbonate powders for 2 h
in a platinum crucible at 1600 8C to produce a bubble-
rich slurry of melt and crystals. This material was stirred
at 1600 8C for several days with a platinum spindle and
then cooled in air. Preparation in this manner ensures that
the highly viscous melt is homogeneous and free of crys-
tals to at least the precision of electron microprobe anal-
ysis. For our experiments, these homogenous, bubble-
and crystal-free glasses were crushed in an agate mortar
and pestle to a grain size of 50 mm.

The powdered glass was then placed in cylindrical plat-
inum capsules 5 mm in diameter and 11 mm long with
0.1 mm thick walls and hammered into place with hard-
ened steel tools specially made to prevent deformation of
the sample during pressing. The interface was tamped flat
with a smooth steel tool before the second powder was
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TABLE 1. Notation

a vector containing all elements of [P] and [L] in x2 fitting
c measured vector of mole fractions of chemical components
C orientation of a diffusion couple in composition space.
D0 diffusion coefficient of network-forming cations (cm2/s)
[D] matrix of diffusion coefficients Dkl (cm2/s)
erf () error function
[F] diagonal matrix of linear operators
J vector of barycentric molar component fluxes (mol cm2/s)
kB Boltzmann’s constant (1.3805 3 10223 J/K)
L length of one side of a diffusion couple (cm)
[P] matrix whose columns are the eigenvectors of [D]
t time (s)
T temperature (K)
u transformed vector of mole fractions of chemical components
x vector of mole fractions of chemical components
y distance (cm)
dkl Kronecker delta equal to l for k 5 l, equal to 0 for all k ± 1
eH O,OH2

infrared absorptivity of water, OH radicals
h viscosity (Pa·s)
l* length scale associated with jump distance for diffusion (cm)
[L] diagonal matrix of eigenvalues of [D] (cm2/s)
l vector of eigenvalues lk of [D] (cm2/s)
n eigenvector of [D] with (n 2 1) components
n* extended eigenvector of [D] with n elements
r molar density of melt (mol/cm3)
s standard deviation
x composition of an end-member of a diffusion couple

TABLE 2. Experiment conditions and starting compositions

Experiment

Couple no.
T(8C)
Time (s)

JMPC43

1
1300
6240

JMPC46

2
1300
7080

JMPC49

3
1300
7200

JMPC51

4
1300
7860

JMPC64

4
1300
3600

JMPC41

4
1600
1920

JMPC44

1
1600
1800

Top
K2O
Na2O
Al2O3

SiO2

H2O

HPG3
5.91
4.54

13.50
73.15
(2.90)

HPG2
4.16
5.50

13.13
73.91
(3.30)

HPG8 1 Al
4.14
5.09

12.83
75.54
(2.40)

HPG9
5.73
3.56

11.57
76.51
(2.90)

HPG9
5.84
3.56

10.91
76.28
(3.40)

s
0.031
0.034
0.077
0.100
0.040

C.V. (%)
0.72
0.63
0.70
0.13
1.33

HPG9
5.77
3.57

11.29
76.38
(2.95)

HPG3
5.84
4.58

13.17
73.90
(2.51)

Bottom
K2O
Na2O
Al2O3

SiO2

H2O

HPG13
2.66
4.60
9.98

79.35
(3.40)

HPG14
4.19
3.55
9.61

80.15
(2.50)

HPG8 2 Al
4.10
3.86
9.98

79.17
(2.90)

HPG7
2.63
5.54

11.57
77.35
(2.90)

HPG7
2.59
5.61

11.13
77.26
(3.40)

HPG7
2.57
5.77

11.32
77.29
(3.05)

HPG13
2.61
4.65
9.72

80.15
(2.91)

Notes: Compositions determined by EMPA and FTIR and recalculated to 100%, keeping water at the level established by FTIR. Water concentrations
in parentheses are based on a small number of points for each side of couple, and were not used to fit diffusion profiles for water. Errors reported
sigma are one standard deviation as calculated for homogeneity tests on zero-time (i.e., very short-duration) experiments; C.V. is coefficient of variation
(standard deviation/mean).

loaded in on top. The bases of the capsules were ham-
mered out flat, whereas the tops were flat discs with up-
turned rims welded in place. Distilled water was added
immediately before closing capsules. In our initial exper-
iments, we made the assumption that the water would
distribute itself uniformly throughout the capsule during
heating, so that when the glass passed through its glass
transition and trapped the water between coalescing par-
ticles of melt, the water concentration would be equal
throughout the capsule. For some experiments this was
found to be true, but in other cases the water was found
to have been distributed non-uniformly. Consequently, we
performed additional experiments in which starting ma-

terials were pre-hydrated in the piston cylinder by loading
capsules with glass of uniform composition and water
content, and holding them at 1600 8C and 1.0 GPa for at
least 1 h. The products of these synthesis experiments
were then ground as before and used as starting materials
for diffusion couples. The consequences of non-uniform
distributions of water for the retrieved diffusion coeffi-
cients of other components are negligible, as discussed
below.

Our experiments were conducted in a ¾0 end-loaded
piston-cylinder apparatus using methods previously de-
scribed by Mungall and Dingwell (1997). All experiments
were conducted at a nominal pressure of 1.0 GPa; the
actual pressure varied by no more than 20%. Reported
temperatures are accurate to within 20 8C, inclusive of
the effects of thermal gradients through our long capsules
(Mungall and Dingwell 1997). Temperatures were raised
to conditions of the experiments at a rate of either 200
or 400 K/min. Experiments were heated through the final
10 8C over a period of about 1 min to prevent overshoot
of the desired temperature. Experiments were quenched
by turning off the furnace, giving cooling rates of ap-
proximately 200 K/s.

Experimental conditions

We performed eight experiments along seven different
diffusion couples (i.e., seven different pairs of end-mem-
ber compositions) at 1600 8C and five experiments along
four diffusion couples at 1300 8C (Table 2). Three couples
(1, 2, and 4 in Table 2) lie parallel to the plane containing
albite, orthoclase, and quartz (the haplogranite plane) in
the system K2O-Na2O-Al2O3-SiO2, but offset by 3 wt%
H2O, intersecting at the composition of HPG8 1 3 wt%
H2O (Fig. 1). Two more couples (3 and 5 in Table 2) lie
at high angles to this plane. Couple 3 is composed of a
peralkaline and a peraluminous equivalent to the base
composition (created by making up glasses with a defi-
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FIGURE 1. Positions of end-member compositions relative to
the haplogranite plane. See text for descriptions of couples, listed
also in Table 2.

TABLE 2—Continued

Experiment

Couple no.
T(8C)
Time (s)

JMPC47

2
1600
1800

JMPC50

3
1600
1800

JMPC61

5
1600
360

JMPC95B

2
1600
1800

JMPC101

6
1600
1260

JMPC102

7
1600
1200

Top
K2O
Na2O
Al2O3

SiO2

H2O

HPG2
4.14
5.56

13.13
73.67
(3.50)

HPG8 1 Al
4.15
4.92

12.59
76.95
(2.39)

HPG8 1 H
4.00
4.91

10.81
76.08
4.19

HPG2
4.12
5.85

13.18
73.84
2.85

HPG8 1 Na
3.93
7.76

11.05
74.99
2.28

HPG8 1 K
9.79
3.28

11.60
73.40
1.92

Bottom
K2O
Na2O
Al2O3

SiO2

H2O

HPG14
4.13
3.71
9.68

80.07
(2.41)

HPG8 2 Al
4.09
4.26
9.74

78.97
(2.95)

HPG8 2 H
4.10
5.21

10.71
77.78
2.19

HPG14
4.10
3.76
9.61

79.29
3.25

HPG8
3.93
5.65

10.97
77.22
1.95

HPG8
4.32
5.42

11.04
76.98
2.24

ciency or excess, respectively, of 2.5 wt% Al2O3), where-
as couple 5 is composed of the base composition itself in
which one side contains approximately 2 wt% H2O and
the other approximately 4 wt% H2O (Table 2), both cross-
ing at HPG8 1 3% H2O. A further two couples (6 and 7
in Table 2) consisted of the base composition on one side
whereas the other side contained an additional 5 wt% of
Na2O or K2O. The bulk compositions of these two cou-
ples are offset slightly from those of the other five by
about 2.5 wt% (relative) of each of the other components.
No couple shows concentration differences of more than
6.5 wt% in any of the oxide components, to minimize the
compositional dependence of [D]. Because our five-com-
ponent composition space could theoretically be spanned
by only four experiments, and our seven couples are at
high angles to one another in composition space, we are
confident that we have covered all possible orientations
of the eigenvectors effectively.

Analytical methods
Our experimental products were sawn in half longitu-

dinally. One half was made into a polished thick section
for EMPA, and the other half was cut and polished on
both sides to 1000 mm thickness for measurement of wa-
ter contents by Fourier transform infrared (FTIR) spec-
troscopy. EMPA data were collected as linear traverses
containing between 100 and 500 data points for each ex-
perimental product. The FTIR data were affected some-
what by the large size of the analysis spot (100 mm) and
the time involved in making each measurement, so that
traverses contained fewer analyses. Therefore, we com-
bined the data sets for oxides and for water by interpo-
lating values of water content at each EMPA spot.

EMPA were obtained using a CAMECA SX-50 instru-
ment; operating conditions were 15 kV accelerating volt-
age and 20 nA beam current, as measured with a Faraday
cup. X-ray emissions were collected with four wave-
length dispersive spectrometers over count times of 25 s
for Al and Si, and 50 s for Na and K. Raw data were
processed with a PAP correction program (Pouchou and
Pichoir 1991). To prevent diffusion of Na and H away

from the volume of glass activated by the electron beam,
we used an expanded beam having a diameter of approx-
imately 10 mm, which was swept along a line 100 mm
long at a scan rate of approximately 25 mm/s. In this
manner we were able to analyze water-rich and Na-rich
glasses repeatedly on the same spot with minimal changes
in composition. The scan line was oriented perpendicular
to the direction of the analytical traverse, ensuring that
the effective spot size along the direction of the traverse
did not exceed the 25 or 50 mm spacing between analysis
spots. Most products were analyzed over the entire length
of the capsule, however a few EMPA traverses were cut
off within 1000 mm of the ends of the capsules. In such
cases, the remaining length was explicitly accounted for
when required in finite couple solutions to the diffusion
equation.

During quench of the experiments, transverse fractures
commonly formed due to release of pressure related to
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TABLE 3. Absorptivities used in FTIR analysis for H2O and
OH

HPG2 HPG3 HPG7 HPG8* HPG9 HPG13 HPG14

eH O2

eOH

1.703
1.523

1.755
1.565

1.738
1.518

1.79
1.56

1.843
1.602

1.825
1.555

1.878
1.597

* Absorptivities for HPG8 1 Al, HPG8 2 Al, HPG8 1 K, and HPG8 1
Na all assumed equal to those for HPG8.

thermal contraction as the assembly was cooled rapidly.
We measured the widths of these fractures and subtracted
them from the analysis profiles.

The split of the experiment product intended for FTIR
analysis was doubly ground to a thickness of 1000 mm
using alumina abrasives followed by a final polish using
diamond powder with water as the lubricant. Polished
samples were cleaned with acetone to remove epoxy. The
samples were then positioned over an aperture in a brass
disk to aim a collimated beam at the sample. To decrease
the spot size further, we introduced a brass slit between
the aperture holes and the sample, which produced an
effective spot size of 100 mm in a direction perpendicular
to the line of traverse. A Bruker IFS 120 HR Fourier
transform spectrophotometer was used to obtain trans-
mission infrared spectra in the NIR region (2500–8000
cm21) using a W light source, a CaF2 beamsplitter, and a
narrow band MCT detector. The spectrophotometer op-
erated at a resolution of 4 cm21 with a scanning speed of
20.0 kHz. A 323 cassegranian objective was used. Typ-
ically, 500–1000 scans were collected for each spectrum;
background was recorded and subtracted in each case.
The two bands of interest in the NIR region are at 4500
and 5200 cm21, attributed respectively to the combination
stretching and bending modes of X-OH groups and of
molecular water groups (Stolper 1982; Newman et al.
1986). For the band at 5200 cm21, a linear background
tangent to the flanking minima was chosen; this back-
ground was extrapolated to lower frequency and used at
4500 cm21 also. The concentration of dissolved water in
the glass contributing to a given band was calculated as
the product of the molecular weight of water and the ab-
sorbance divided by the product of the sample thickness,
the molar absorptivity (extinction coefficient), and the
sample density (see Romano et al. 1995 for further
details).

Because we measured water concentrations along pro-
files across inhomogeneous materials, the dependence of
absorptivities for OH and H2O on composition was a mat-
ter of some concern. We considered the published values
of molar absorptivities for compositions along the join
Ab-Or (Romano et al. 1995; Behrens et al. 1996) and for
haplogranitic glasses (Nowak and Behrens 1995), and
both interpolated and extrapolated to each of the seven
of our end-member compositions whose anhydrous
equivalents lie within the haplogranite plane (Fig. 1). The
estimated absorptivities are listed in Table 3. For couples
whose end-members do not lie in the haplogranite plane,

we used constant values of absorptivities equal to those
measured for the base composition HPG8. Using this ap-
proach, we found that inferred absorptivities depend pri-
marily on the Al2O3 content of the glass. Because the
concentration of Al2O3 in all of our measured profiles is
essentially a step function at the level of spatial resolution
of the FTIR analyses, we treated each side of the annealed
couple as homogeneous with respect to absorptivity, us-
ing the value we had adopted for the original end-member
over the entire half-profile. Although the method of linear
interpolation and extrapolation introduces some errors in
derived water contents, it is probably more accurate than
using a single set of absorptivities throughout the study.
We also stress that in the example of experiment
JMPC95B (Fig. 2c), the observed uphill diffusion of wa-
ter is not an artifact of the adopted absorptivities because
the shape of the profile remains qualitatively the same if
a single set of absorptivities is used over the whole
profile.

RESULTS

Diffusion profiles

The results of some of our experiments are presented
in Figure 2 as concentration profiles. The complete data
set is far too large to be presented here, even graphically.
We have plotted the concentrations as mole fractions of
the components K12O6, Na12O6, Al4O6, Si3O6, and H12O6.
The six-O molecules were an arbitrary choice of com-
ponent, which permit comparison with the only other
published multicomponent diffusivities for granitoid
melts (Chakraborty et al. 1995a, 1995b). It is important
to note that once these arbitrary components have been
chosen, the [D] that is extracted from the profiles is ap-
plicable only to these components. Clearly, expressing
mole fractions with different stoichiometries leads to dif-
ferent nominal concentration differences and therefore re-
quires different Dkl to relate the fluxes to the concentra-
tion gradients.

Several qualitative features are immediately visible
upon inspection of Figure 2. First, there are two different
length scales of diffusion in the profiles. A long length
scale, on the order of 1 cm in all cases, is associated with
the long, gentle slopes in concentrations of alkalis and
water (e.g., Figs. 2a, 2b, 2d, and 2e) and, in some cases
silica (e.g., Figs. 2b and 2d). A much shorter length scale
is associated invariably with the alumina concentration
profiles, and this length scale is also observed in profiles
of all other elements when there is an initial difference
in alumina concentration across the couple (e.g., Fig. 2c).
In other words, alumina diffusion is itself restricted to a
very short length scale, and induces short length-scale
effects on the otherwise much longer profiles of all the
other components. Second, all of the profiles of the 1300
8C experiments can be superimposed upon the profiles of
the 1600 8C experiments by a suitable linear transfor-
mation of the spatial scale, illustrated for selected profiles
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FIGURE 2. Selected experimental
diffusion profiles. (a) The measured
data for experiment JMPC41 (couple
4 in Table 2) are shown superimposed
on the model profiles generated using
the extracted diffusion coefficients in
Equations A12 and A13. The top of
the couple is at the right of the dia-
gram. In almost all cases, the model
falls within the measurement error
that is reported in Table 2 (one stan-
dard deviation equals about the size
of a plot symbol). Most measured
profiles contained many more analy-
sis points than are shown here, but
the data were too voluminous to plot.
(b) Measured and model profiles for
experiment JMPC61, corresponding
to couple 5 in Table 2 (top at left).
(c) Measured and model profiles for
experiment JMPC95b, corresponding
to couple 2 in Table 2 (top at right).
(d) Measured and model profiles for
experiment JMPC101 (top at right).
(e) Measured and model profiles for
experiment JMPC102 (top at left).
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FIGURE 3. Measured profiles of JMPC44 (1600 8C) and
JMPC43 (1300 8C). both along couple 1 in Table 2, superim-
posed by stretching the spatial scale of the two profiles (this
process eliminates dependencies on both time and the eigenval-
ues), showing that they have obeyed the same set of eigenvec-
tors. EMPA data for K12O6 are shown as crosses, whereas the
data for Na12O6 are shown as triangles, plotted as solid symbols
for JMPC44 and half-toned for JMPC43. The coincidence of the
two profiles also shows that other mass transfer processes such
as advection have not affected the forms of the profiles.

in Figure 3. The common trick of de-dimensionalizing
the spatial scale with the Boltzmann variable (e.g., Crank
1975, p. 105) cannot be applied here because the two
experiments were performed at different temperatures
(i.e., the eigenvalues of [D] were different), so that the
amount of stretching used to superimpose the two profiles
does not contain any useful information. On the other
hand, this superposition has two important implications.
First, it can be used in place of the commonly employed
time-series method to infer that the observed profiles are
the result exclusively of diffusive processes, because dis-
tortions due to convection of the melt would not be ex-
pected to be reproduced between experiments with such
different durations, temperatures, and viscosities. Second,
it can be used to infer that the orientations of the eigen-
vectors of [D] did not change between 1300 and 1600 8C
(or else the forms of the profiles would have changed).

To ensure that convection was not a source of error in
our results, we performed two experiments of different
duration (i.e., a time series) on one couple at 1300 8C.
The time-series approach has important limitations that
discouraged us from using it more widely. For the length
of capsule we have used, there is a small window of use-
able experiment durations. For example, in experiments
of longer duration, the longer length-scale profiles are fi-
nite and consequently increasingly poorly constrained due
to the difficulties of controlling the shapes of the ends of
the capsules. Similarly, in experiments of shorter dura-

tion, the shorter length-scale diffusion profiles become so
short that there were too few data points in the sloping
part of the profile to constrain the diffusivities. The only
way to combat these difficulties would be to use longer
capsules, but the experimental assembly requires that the
capsules be no longer than the standard 11 mm capsule
we used. Thus, one of the profiles had to be fit with the
finite couple model equation, whereas the other was fit
with the infinite couple equation; the [D] extracted using
the shorter duration experiment could be used success-
fully to model the profile generated in the longer duration
experiment.

Water concentrations
Water concentrations were added to the EMPA data

sets by taking spot analyses of water content and inter-
polating to produce estimated water concentration pro-
files. These interpolated profiles were then added to the
EMPA data to produce a new data set that was normal-
ized to 100%. Each microprobe analysis thus preserved
the measured (or interpolated) water content at that point.

The water contents of several of the experiments were
measured at only a few spots, because water contents
were found not to have homogenized completely during
the heating ramp at the beginning of the experiment. In
these cases, water concentration profiles were not includ-
ed in the x2 analysis, but were used to constrain the con-
centrations of the other components by the recalculation
described above. Although the uncertainty in water con-
tent in these experiments is much too large to permit ex-
traction of components of [P] and [L] corresponding to
water, it translates into a relative uncertainty in the re-
calculated concentrations of the other components of less
than 1%, well within the error of the EMPA data. All
determinations of components of [P] and [L] relating to
water were performed on water concentration profiles
from experiments JMPC61, JMPC95B, JMPC101, and
JMPC102 (Figs. 2b–2e), which were prepared with pre-
hydrated glasses to ensure homogeneity of the end-mem-
bers of the couples at the commencement of the
experiments.

Diffusion coefficients
We used the interactive forward-modeling approach

described above to fit the vector of eigenvalues and ma-
trix of eigenvectors (Table 4) to the results of the exper-
iments conducted at 1600 8C, using Si3O6 as the solvent.
The eigenvalues are a fundamental property of the melt
system and do not depend on the arbitrary choice of sol-
vent, a property we have confirmed by repeating the fit
using Al4O6 as the solvent (results not shown). The ex-
tended compositional vectors n * derived with the two fits
are identical.

The two largest eigenvalues we have determined, re-
lating fluxes of K and Na to fluxes of other components,
are degenerate within the precision of the microprobe
data. As a result, there are no constraints on the K-Na
and Na-K components of [P]; i.e., any value can be
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TABLE 4. Eigenvectors, eigenvalues, and elements of [D]

nK nNa nAl nH

K 1.00 (0)
0.096
0.076
0.063

0.17
0.00

20.07

Na (0) 1.00
0.225
0.215
0.195

0.22
0.00

20.32

Al
0.19

(0.0)
20.15

0.06
20.00
20.26

1.000
0.23

20.00
20.28

H (0) (0)
0.38
0.28
0.15

1.00

n*Si 21.00 21.00 21.57 21.00

l(31028 cm2/s)
1600 620

550
480

630
540
470

4.4
3.4
2.5

460
280
190

1300 220
190
160

260
240
210

0.45
0.34
0.25

nd

Notes: Eigenvector elements are expressed as triplets. Values from top
to bottom of each triplet are upper bound, best fit, and lower bound, re-
spectively, based on x2 fits to diffusion profiles (one standard error).

FIGURE 4. A detailed look at the central portion of JMPC44
(couple 1 in Table 2), showing all available data, displaying the
quality of the fit to the subtleties of inflections in the measured
profile.

placed in these elements of [P] and the resulting matrix
can be used to provide an acceptable fit to the diffusion
profiles. Because the K-Al and Na-Al, and the K-H and
Na-H components of [P] are all found to have constraints
(variations in these parameters leads to rejection of the
model by the x2 test), we conclude that the extended com-
positional vectors created from these two columns of the
[P] matrix (see Eq. A17) lie within the ternary Si3O6-
K12O6-Na12O6 plane. Therefore, all couples that show ini-
tial variations composed entirely of Na-K, Na-Si, and K-
Si exchanges will show binary interdiffusion profiles with
no observable coupling. A similar situation arises with
respect to H-K, H-Si, and H-Na diffusion, as a result of
the relatively poor analytical precision on the data for
H12O6, despite the fact that the measured eigenvalue for
H12O6 is significantly smaller than those of Na12O6 and
K12O6. Therefore, all eigenvalues associated with Na, K,
and H interdiffusion are effectively degenerate in the hap-
logranitic melt, to the degree of accuracy permitted by
our EMP and FTIR analyses. More precise methods
would permit separation of these nearly degenerate ei-
genvalues and observation of three distinct eigenvectors.
However, we stress that the improved precision would
have an insignificant effect on the shapes of profiles mod-
eled using Equation A12. As a result of the degeneracy
in the measured eigenvalues, a unique [D] matrix cannot
be calculated for the hydrous haplogranitic system at the
temperatures and pressure of our experiments. Substitu-
tion of any arbitrarily chosen value into [P] would gen-
erate one of an infinite number of very different looking
[D], each of which would predict the forms of all of the
diffusion profiles shown in Figure 2. It is for this reason
that we report neither [D] nor errors in [D], but confine

our attention to the matrix [L]. We remind the reader that
[L] is a matrix of diffusion coefficients just like [D], and
it can be used to predict interdiffusion of the chemical
components whose stoichiometries are defined by the ei-
genvectors rather than the usual mole percent components
with which we started our discussion.

The success of the fit to the data can be seen qualita-
tively by inspecting Figure 2, where the diffusion profiles
predicted using Equation A12 for the eigen-parameters in
Table 4 are shown as solid lines superimposed on the
measured profiles. The model curves are with minor ex-
ceptions within the scatter of the data and duplicate in
detail even subtle inflections in the experimental profiles.
The quality of the fit for couple JMPC44 is illustrated in
detail in Figure 4; the fits for most penetration profiles
(other than those for water) were of similar quality. The
misfit in Si6O12 observed in some profiles is a direct con-
sequence of the relatively poor quality of the data for
water because the recalculation of component concentra-
tions to hydrous compositions places the greatest share
of the distributed error onto Si6O12, the most abundant
component.

The data collected on experiments conducted at 1300
8C suffer somewhat from the effects of irregularities in
the polished surfaces of the sections due to the presence
of quench-induced fractures. Despite these irregularities,
we were able to fit a single [P] matrix to both the 1600
8C and the 1300 8C data sets. The only parameters that
had to be fit differently for the results of experiments at
these two temperatures were the eigenvalues [L].

DISCUSSION

Temperature dependence of [L]
In Figure 5 we show the relationship between the log-

arithms of the eigenvalues of [D] and reciprocal temper-
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FIGURE 5. Arrhenius diagram showing logarithm of diffusion
coefficients vs. reciprocal temperature. Note the effective equiv-
alence (degeneracy) of the eigenvalues for Na12O6, K12O6, and
H12O6-Si3O6 exchange. Also note that the diffusivity predicted for
viscosity-controlling network formers by the Eyring equation is
bracketed by the measured eigenvalues, but lies closest to the
eigenvalue corresponding primarily to exchanges of Al4O6 for
Si3O6. The error bars shown are one standard deviation, as re-
ported in Table 4.

ature. Because we have data for only two temperatures,
it is not possible to say whether the diffusivities show an
Arrhenian dependence on temperature. We have also plot-
ted the self-diffusivity of network-forming cations, D0, as
estimated from the Eyring equation:

k TB0D 5 (5)
hl*

(Glasstone et al. 1941), where h is the melt viscosity, kB

is Boltzmann’s constant, and l* is a length scale identi-
fied with the jump distance of a diffusive step. The Eyring
equation is based on the premise that the diffusive jump
whose length is represented by l is also the fundamental
mechanism of viscous flow. We have chosen 5 3 10210

m for l* (Mungall and Dingwell 1997) and have used an
empirical model for viscosity of hydrous granitic melts
to estimate h (Hess and Dingwell 1996b). The diffusivity
predicted by the Eyring equation is similar to that mea-
sured for the smallest eigenvalue in our experiments. Oth-
er investigators also have found a good correspondence
between the predictions of the Eyring equation and ex-
perimentally derived diffusivities in silicate melts (e.g.,
Baker 1992; Lesher et al. 1996). We concur with the com-
mon suggestion (e.g., Chakraborty et al. 1995b) that the
atomic-scale mechanism responsible for Al-Si interdif-
fusion, represented macroscopically in our results by the
smallest eigenvalue, may exert a limiting control on the
rate of viscous flow. Al makes up only about one-eighth
of the tetrahedrally coordinated network-forming ions in
the melt, but each Al ion is connected by T-O-T bonds
to four other network formers. Thus, about half of the Si

ions are members of Si-O-Al links, and consequently suf-
fer a loss of mobility caused by the difficulty of breaking
such links. If Al-O-Si linkages are much slower to break
and reform than Si-O-Si linkages, the reactions involving
Al would be expected to have a greater influence on the
observed viscosity. In the limiting case of an infinitely
slow Al-O-Si bond-breaking process, the Stokes-Einstein
equation could be used with a particle size equivalent to
that of a single AlO4 tetrahedron surrounded by four SiO4

tetrahedra. This case might relate well to the common
observation that the Stokes-Einstein equation works well
to relate viscosity to diffusivities in highly polymerized
melts if the length scale chosen is about 10 times that
used for the Eyring equation (cf. Mungall and Dingwell
1997).

Because [L] is known at only two temperatures, it
would be foolish to extrapolate our results to tempera-
tures between the liquidus and the solidus of granitic
magmas at upper crustal conditions. However, the simi-
larity between the predictions of the Eyring equation and
the smallest eigenvalue over the range of conditions
reached in our experiments, suggests that there is great
potential for the future prediction of [L] through an ex-
tension of the Eyring equation to multicomponent liquids.

Exchange vectors and transport mechanisms

In this section we discuss the implications of the ei-
genvectors for diffusive exchange processes. We define
the locus in composition space of compositions described
by a diffusion profile as the diffusion path (Gupta and
Cooper 1971). If the orientation of the vector defined as:

C 5 x1 2 x2 (6)

is parallel to an eigenvector, then the diffusion path is a
straight line directly along the eigenvector. This corre-
sponds to an exchange of chemical components that can
be described entirely by the stoichiometry of the extended
eigenvector n *. In other words, the extended eigenvector
itself defines an exchange process in the melt. For ex-
ample, the third eigenvector in the [P] matrix extracted
from our data using Si3O6 as the solvent has the extended
vector:

*n 5 [(0.08 ), (0.22 ), (1.00 ),K O Na O Al O12 6 12 6 4 6

(0.28 ), (21.57 )] (7)H O Si O12 6 3 6

which corresponds to an exchange of Al4O6 and minor
amounts of K12O6, H12O6, and Na12O6 for Si3O6. Because
the identities of these exchanges do not change with a
change of solvent, they are fundamental properties of the
melt system that reflect processes, which can proceed in-
dependently of the fluxes of the other components. This
definition of an exchange reaction is not consistent with
that proposed by Chakraborty et al. (1995b), which does
depend on the choice of solvent and consequently cannot
be a fundamental melt property. During exchange along
an extended eigenvector, each component appears to dif-
fuse in a binary manner. This is the only situation in
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which an effective binary diffusion coefficient (EBDC)
corresponds to a diffusivity of general significance. The
fact that along an eigenvector all components diffuse as
though they were entirely independent of the other com-
ponents, suggests that the stoichiometry of the extended
eigenvector defines the average stoichiometry of the sum
of all atomic scale processes, which combine to produce
macroscopically observable fluxes.

If the orientation of a couple, C, does not parallel an
eigenvector, it must project onto at least two eigenvectors.
The consequence of the orientation of C is that the era-
sure of the step change in concentration at the initial in-
terface must proceed through the agency of at least two
different exchange reactions, each of which proceeds at
a different rate that is set by its eigenvalue. If the eigen-
values all have the same magnitudes, then the diffusion
path will still be a straight line despite the fact that it
does not parallel an eigenvector. The likelihood that one
or more eigenvalues will be within measurement error of
one another results in an important exception to the rule
suggested by Trial and Spera (1994), who state that if a
diffusion couple produces binary concentration profiles it
must parallel an eigenvector. If the eigenvalues are dif-
ferent, then the more rapid exchange process will take
place faster, causing the diffusion path closest to the end-
members to be deflected along the direction of the eigen-
vector associated with the larger eigenvalue and resulting
in a non-binary looking profile.

The stoichiometries of the independent exchange re-
actions defined by our [P] matrix can be used to make
qualitative inferences about the molecular-scale mecha-
nisms for diffusive transport of the major element com-
ponents of the melt. The simple, completely decoupled
exchanges found for Group I oxides with silica imply
that these exchanges do not affect neighboring Al ions
at all.

It is has been suggested (e.g., Baker 1992) that alkalis
exchange for one another within a relatively immobile
lattice of tetrahedrally coordinated cations by a process
that proceeds far more readily than any involving the
tetrahedral sites themselves. We have shown that even
though such alkali exchange is consistent with some of
our results, equally rapid exchanges of alkalis for net-
work-forming Si are required by the observed concen-
tration profiles. It is tempting to argue that because a
mechanism involving alkali-silica exchange is required
to exist by the observations of silica-alkali diffusion, it
is unnecessary and unjustified to propose an additional,
extraneous mechanism for inter-alkali exchange.

The diffusion of water is thought to proceed by the
formation of neutral water molecules that diffuse in a
manner analogous to noble gases with minimal interac-
tions with the other components of the melt (e.g., Was-
serburg 1988). This hypothesis receives considerable
support from the observation of infrared absorption at-
tributed to the presence of H2O molecules (e.g., Shen
and Keppler 1995). The operation of such a mechanism
along the water-silica exchange eigenvector cannot be

ruled out by our data, but the uphill diffusion of water
linked to alumina-silica exchanges appears to result
from coupling of dissociated water to alumina. For ex-
ample, in experiment JMPC95B (Fig. 2c), the initial
compositional profile for water was flat, and the inter-
diffusion of Al and Si led to the transfer of significant
amounts of water across the interface. Furthermore, the
identical diffusive behavior of all the Group I elements
observed in our experiments strongly suggests that H,
Na, and K are diffusing by the same set of mechanisms,
and we are reluctant to propose the existence of free
Na2O and K2O molecules in granitic melts. A possible
way out of this dilemma is to propose that even though
water can associate to form neutral molecules, such mol-
ecules may be forced to undergo a dissociation reaction
to form their activated complex for diffusion (M. No-
wak, personal communication). In this scenario, water
molecules dissociate and migrate by a mechanism like
that employed by alkalies, and rejoin to form H2O mol-
ecules again after the diffusive jump is complete. We
could thus explain alkali metal and water diffusion by
very similar mechanisms, while allowing for the exis-
tence of fully dissociated alkalis and both dissociated
and molecular forms of water.

COMPARISON TO PREVIOUS STUDIES

Water diffusion

Numerous studies have addressed the diffusion of wa-
ter in granitic melts. The more rigorous treatments have
modeled explicitly the extreme concentration depen-
dence of the effective binary diffusivity of water at low
concentrations (e.g., Karsten et al. 1982; Zhang et al.
1991). All previous studies of water diffusion have used
couples like our couple 5 (experiment JMPC61), in
which different amounts of water are present in a fixed
base composition, in contrast to several other couples
(e.g., couple 2, experiment JMPC95b), in which the re-
sponse of water to fluxes of other components can be
observed for the first time. Although the profile in Ex-
periment JMPC61 does show some evidence for com-
positional dependence in the eigenvalue for water-silica
exchange in the form of a distinct steepening at the low-
er concentrations, we have been able to neglect this ef-
fect because it is far less pronounced at the high water
concentrations used in our study than it is in the case of
hydration of an initially anhydrous glass or melt. In the
direction of JMPC61, we observe pseudo-binary inter-
diffusion of water vs. a combined counterflux of alkalis
and silica over a long diffusion region, but a short, sharp
step in the alumina concentration. This result is due to
the degeneracy of the eigenvalues for water- and alkali-
silica exchanges; in other words, water exchanges for
alkalis and silica whereas alumina remains relatively im-
mobile. The short, sharp step in the modeled alumina
concentration shown in Figure 2b is easy to overlook,
particularly in experiments in which the total change in
water concentration is on the order of 1 wt% or less,
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allowing the common misconception that water diffuses
independently of all other components in silicate melts.
In fact, if one considers the implications of the diffusion
equations, one realizes that it is impossible for a single
component to diffuse entirely independently of other
components except in the limiting case of true tracer
diffusion (or the case in which all eigenvalues are
equal). As we see in the profile for JMPC95b (Fig. 2c),
an experiment in which water originally was present in
equal concentrations on either side of the couple, but
there was a gradient in alumina concentration, water is
constrained to diffuse up its concentration gradient like
the other Group I elements.

Transient partitioning
It is interesting to compare the observed uphill diffu-

sion with the concept of transient partitioning advanced
by Watson (1982). He observed that K2O could diffuse
uphill between basaltic and rhyolitic melts, leading to
transient enrichments that persisted while slower-moving
components retained appreciable gradients in concentra-
tion, and suggested that the effect resulted from large dif-
ferences in activity coefficients in the two melt compo-
sitions. Similarly, if an experiment such as JMPC95B
(Fig. 2c) were allowed to proceed for a much longer time
than our experiment, the system would stabilize at some
later time with elevated alkali and water contents in the
alumina-rich side of the couple, despite having begun
without any initial gradient in concentrations of either
water or Na6O12. The partitioning, once established,
would persist until the Al concentration gradient was
erased by continued Al-Si interdiffusion. This type of
transient partitioning is predicted by multicomponent dif-
fusion theory for any couple not parallel to an eigenvector
in which rapidly diffusing components show no initial
concentration gradient. Although Watson (1982) attrib-
uted uphill diffusion to differences in activity coefficients
between the two melts, this effect can be produced, in
theory, by either kinetic factors, variations in activity co-
efficients, or combinations of both (e.g., Kuiken 1994).

Eigenvector directions
Chakraborty et al. (1995b) measured eigenvectors in a

multicomponent melt in the system K2O-Al2O3-SiO2 and
found, as we did, that the exchange of alkalis for silica
proceeds independently of alumina, whereas the ex-
change of alumina for silica always produces an associ-
ated flux of the alkali components. The eigenvectors for
our five-component system project directly onto those of
Chakraborty et al. (1995b) in the three-component sub-
system, and we are able to predict the form of their dif-
fusion profiles exactly using our eigenvectors along with
their eigenvalues (J. Mungall, in preparation).

CONCLUSIONS

In this study we have applied a theoretical model for
chemical diffusion in multicomponent systems to exper-
imental determinations of diffusion profiles in a synthetic

analog to granitic melts. The results of our study indicate
that the irreversible thermodynamic treatment for con-
stant diffusion coefficients describes multicomponent dif-
fusion in granitic magmas within the analytical uncertain-
ty of EMP and FTIR analyses of melt compositions.

Inspection of the eigenvectors of the matrix of diffu-
sion coefficients shows that alkalis and water diffuse
through exchanges with silica, each of these exchanges
being capable of proceeding independently of all others
in the melt. In sharp contrast to this behavior, diffusive
exchange of alumina for silica is found to cause concom-
itant fluxes of alkalis and water. The coupling of fluxes
of alumina with fluxes of alkalis and water is likely to
result from the need for Al31 in tetrahedral coordination
in the melt to be charge-balanced by a nearby M1 ion.
The eigenvalue associated with alumina-silica exchange
is approximately two orders of magnitude smaller than
those associated with exchanges of alkalis and water for
silica.

The eigenvectors of the diffusion matrix appear to be
constant through large variations in temperature and com-
position, whereas the eigenvalues show strong tempera-
ture dependencies. Application of the Eyring equation to
our base melt composition at the two temperatures at
which we determined the multicomponent diffusion co-
efficients predicts a value somewhat smaller than the ei-
genvalue associated with alumina-silica exchange within
experimental error, suggesting that alumina-silica ex-
change is the rate-limiting process in a viscous flow pro-
cess involving exchanges of both M11 and Al for Si. The
regularity of the relationship between the eigenvalues and
the diffusivity predicted by the Eyring equation, together
with the apparent constancy of the eigenvectors, holds
promise for the eventual development of predictive mod-
els for multicomponent diffusion that would require melt
viscosity as the only input parameter, over wide ranges
of composition and physical conditions.

The extracted set of diffusion coefficients is general to
all haplogranitic melts near the water-saturated eutectic at
high temperatures and high pressures and should be of
use to investigators interested in various processes in-
cluding crystal growth, magma mixing, and viscous flow.
The present work should be regarded as a first step to-
ward a general investigation of the dependence of the
eigenvectors and eigenvalues of [D] on temperature, pres-
sure, and melt composition, with the aim of deriving a
predictive model for chemical diffusion in all natural sil-
icate melts. Equipped with such a model, we will be able
for the first time to make quantitative predictions of the
role of rate processes in controlling a multitude of time-
dependent igneous phenomena.
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APPENDIX

Recall from Equation 1 that:

]x
J 5 2r[D] (A1)

]y

It can be shown that the matrix [D] is positive and
semidefinite (e.g., Kuiken 1994, p. 223; Gupta and Cooper
1971), with the very useful result that it is diagonalizable and
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has real, positive eigenvalues. The eigenvalues li are the (n
2 1) roots of the polynomial:

p(l) 5 det([D] 2 l[I]) 5 0. (A2)

The homogeneous system of equations:

([D] 2 l [I])v 5 0 (A3)i i

can be solved for the (n 2 1) eigenvectors, vi, each associated
with an eigenvalue li. There is an infinite number of possible
magnitudes for each eigenvector, and we choose one by
setting one of the elements equal to a convenient number, for
example 1. The eigenvectors are all linearly independent,
because one is not a multiple of another. If the eigenvectors
of [D] are assembled columnwise into a square matrix [P],
and we define a matrix [L] whose diagonal elements are the
corresponding eigenvalues of [D], then:

[D] 5 [P]·[L]·[P]21. (A4)

Insertion of A4 into A1, and left-multiplying the resulting
equation by the operator [P]21, yields:

]x
21 21[P] ·J 5 2r[L][P] (A5)

]y

(n 2 l) flux equations in which the fluxes and concentrations
are expressed in terms of new, transformed chemical
components whose stoichiometries are given by the relation:

u 5 [P]·x. (A6)

The fluxes of these new components ū are independent, thus
allowing them to be calculated separately from one another,
because [L] is a diagonal matrix.

The elements of [D], and hence either [L] or [P] (or both),
must depend on composition (see Kuiken 1994, p. 225). If
the elements of [D] and their compositional dependencies are
known, it is possible to solve Equation A5 using numerical
methods. However, the compositional dependence of [D]
prevents the derivation of analytical solutions to Equation
A5. In the trivial case, we observe that the elements of [D]
may be approximated constant values over sufficiently small
variations in composition. In the second case, we consider
the possibility that the orientations of the eigenvectors
represented by [P] remain constant in composition space, so
that [P] itself is constant.

In both the case of constant [D] and of constant [P] only,
the matrix [P]21 can be placed within the partial derivative
on the right hand side of Equation A5. The species
conservation equation can be written:

] ]J
(rx ) 5 2 . (A7)

]t ]y

Introducing [P]21 to both sides of Equation A7, with the fact
that a constant [P]21 commutes with both partial derivatives
in Equation A7 gives:

] ]
21 21(r[P] ·x ) 5 2 ([P] ·J ). (A8)

]t ]y

Combining Equations A5, A6, A7, and A8 and retaining the
assumption of constant , yields:[P]

]u ] [L]]u
5 (A9)

]t ]y ]y

which is a set of (n 2 l) uncoupled binary diffusion equations
each in the form of Fick’s second law for variable diffusion
coefficients. For the second case above, with only [P] held
constant, these uncoupled equations can be solved
numerically in a manner exactly analogous to the solution of
a binary diffusion equation in which the diffusion coefficient
is a function of composition or space (e.g., Crank 1975,
Chapters 8 and 9). For the first case above, with both [P] and
[L] constant, [L] can be moved outside the partial derivative
on the right hand side, leaving (n 2 l) mutually independent
diffusion equations, each with a constant diffusion coefficient
Lkk.

The most popular experimental configuration in
investigations of chemical diffusion is the couple, in which
two reservoirs of melt with contrasting and initially
homogeneous compositions and (ū1 and ū2 in thex̄ x̄1 2

transformed compositions) are brought into contact along a
planar interface at zero time and allowed to interdiffuse for
a known period of time before quenching. This geometry
approximates well to a one-dimensional system if the two
reservoirs have matching sides perpendicular to the interface,
or at large distances from the container walls if the walls are
irregular. If measurable diffusive fluxes do not reach to the
ends of the two reservoirs, they are effectively infinite in
extent, and the couple is called an infinite couple. If the fluxes
do affect compositions at the ends of the reservoirs then the
couple is called a finite couple.

Following Gupta and Cooper (1971) and Trial and Spera
(1994), we write a general solution to Equation A9 for
constant [L] in the form:

u 1 u1 2u 5 1 [F](u 2 u ) (A10)1 22

where [F] is a diagonal linear operator whose diagonal
elements are functions of time, space, and the eigenvalues of
[D]. Then:

x 1 x1 2 21x 5 1 [P] ·[F] ·[P] ·(x 2 x ) (A11)1 22

or in expanded form:
n21 n21x 1 xk(1) k(2) 21x 5 1 P F P Dx . (A12)O Ok kl lm lm m2 l51 m51

For the infinite couple:

1 y
F 5 d erf (A13)lm lm 1 22 Ï4L tlm

and for the finite couple:
`2 1 np(L 1 y)1F 5 d cosOlm lm 1 2[p n L 1 Ln51 1 2

npL1 2 2 22n p L t/(L 1L )lm 1 23 sin e (A14)1 2 ]L 1 L1 2

where L1 and L2 are the lengths of the two sides of the couple
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(Trial and Spera 1994). If L1 and L2 are not equal, then the
first term on the right hand side of Equations A11 and A12
(the bulk composition of the couple) is redefined as:

L L1 2x 5 x 1 x . (A15)bulk 1 2L 1 L L 1 L1 2 1 2

The finite couple solution is appropriate when the following
condition is satisfied:

L tlm 22, 10 (A16)
2(L 1 L )1 2

(Trial and Spera 1994).
As Trial and Spera (1994) pointed out, the eigenvectors

depend on the choice of solvent. However the underlying
diffusive coupling described by the eigenvectors must be
invariant with choice of solvent, because the solvent choice

is an arbitrary matter. Similarly, the identities of the (n 2 l)
independent eigenvalues must also be invariant with the
choice of solvent. A solvent-independent set of vectors in the
composition space, each associated with one of the
eigenvalues, can be derived from a particular set of
eigenvectors as follows. The new vector v̄* consists of the
original (n 2 1) elements of the eigenvector and an
additional, nth element, which is defined as:

n21

v* 5 2 v (A17)On k
k51

so that the sum of all of the elements of the new vector is
zero. The vectors v so defined all lie within the surface
including the n compositions 5 (1, 0, . . . 0), 5 (0,x̄ x̄k k 1 1

1, 0 . . . 0) . . . 5 (0 . . . 0, 1). In a ternary system, thisx̄n

plane corresponds to the ternary diagram familiar to
petrologists.


