X-ray absorption characterization of Cr in forsterite within the MacAlpine Hills 88136 EL3 chondritic meteorite

DAVID A. MCKEOWN^{1,*}, ANDREW C. BUECHELE¹, RYAN TAPPERO², TIMOTHY J. MCCOY³ AND KATHRYN G. GARDNER-VANDY³

¹Vitreous State Laboratory, The Catholic University of America, 620 Michigan Avenue NE, Washington, D.C. 20064, U.S.A. ²Photon Sciences Department, Brookhaven National Laboratory, Upton, New York 11793, U.S.A.

³Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560-0119, U.S.A.

ABSTRACT

Chromium *K*-edge X-ray absorption spectra were collected to characterize Cr in forsterite (Mg₂SiO₄) as well as sulfides within the MAC 88136 EL3 chondrite to determine Cr valence and to see whether forsterite within this meteorite can be used as a Cr²⁺-silicate standard. Spectra were measured on several areas within a nearly pure 100 × 200 µm forsterite grain containing 0.13 wt% Cr. XANES findings indicate highly reduced Cr²⁺ species, with no clear evidence of Cr³⁺ or Cr⁶⁺. EXAFS data indicate an average 2.02 Å Cr-O nearest-neighbor distance, consistent with Cr-O distances found in square-planar Cr²⁺O₄ sites observed in synthetic crystalline silicates, and an average 2.69 Å Cr-Si second-nearest neighbor Debye-Waller factor and coordination number parameters indicate Cr²⁺ is likely entering forsterite in disordered sites that are possible intermediates between M(1) and square-planar Cr²⁺O₄ configurations. Preliminary Cr XAS measurements on sulfides within this meteorite also indicate Cr²⁺ in CrS₆ octahedra.

Keywords: Cr²⁺-silicate, meteorite, X-ray absorption spectroscopy