American Mineralogist, Volume 98, pages 1966–1971, 2013

WHAT LURKS IN THE MARTIAN ROCKS AND SOIL? INVESTIGATIONS OF SULFATES, PHOSPHATES, AND PERCHLORATES

Looking for jarosite on Mars: The low-temperature crystal structure of jarosite[†]

STUART J. MILLS^{1,*}, FABRIZIO NESTOLA², VOLKER KAHLENBERG³, ANDREW G. CHRISTY⁴, CLIVIA HEJNY³ AND GÜNTHER J. REDHAMMER⁵

¹Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia
²Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, Padova I-35131, Italy
³Institut f\u00fcr Mineralogie und Petrographie der Universit\u00e4t Innsbruck, Innrain 52, 6020 Innsbruck, Austria
⁴Centre for Advanced Microscopy, Australian Natioanl University, Canberra, ACT 0200, Australia
⁵Department of Materials Engineering and Physics, University of Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria

ABSTRACT

Single-crystal diffraction of jarosite, $KFe_3^{3+}(SO_4)_2(OH)_6$, has been undertaken at low temperatures that proxy for martian surface conditions. Room-temperature data are consistent with literature data [a = 7.2913(5), c = 17.1744(17), and V = 790.72(11) in $R\overline{3}m]$, while the first low-temperature data for the mineral is presented (at 253, 213, 173, and 133 K). Data collections between 297 and 133 K show strongly anisotropic thermal expansion, with the **c** axis much more expandable than the **a** axis. Much of the anisotropy is due to strong distortion of the KO₁₂ polyhedron, which increases by 8% between 297 and 133 K. The data sets can aid in the identification of jarosite by X-ray diffraction of martian soils using the Curiosity Rover's CheMin instrument.

Keywords: Crystal structure, low temperature, jarosite, Mars, anisotropy, alunite supergroup