An X-ray diffraction study of the pressure-induced hydration in cordierite at 4–5 GPa

ANNA YU. LIKHACHEVA,* SERGEY V. GORYAINOV, AND TARAS A. BUL'BAK

Sobolev Institute of Geology and Mineralogy SibD RAS, pr. ac. Koptyuga 3, 630090 Novosibirsk, Russia

ABSTRACT

The elastic and structural behavior of natural cordierite compressed in aqueous medium up to 6 GPa was studied by means of in situ synchrotron powder diffraction with a diamond-anvil cell. In the range between 1–4 GPa the elastic behavior is regular and slightly anisotropic, with linear compressibilities $\beta_a:\beta_b:\beta_c = 4:4:5$, the most rigid **a-b** plane coinciding with the orientation of 6-membered rings. A distinct decrease of compressibility in the range of 4–5 GPa indicates a pressure-induced hydration (PIH), which is confirmed by the structure refinements. The addition of about 60% of the initial water content into the cordierite channels proceeds through positional disordering of the H₂O sites inside the channel cavity and a stepwise filling of the H₂O position inside the 6-membered rings prevents their contraction and even causes their slight enlargement along the **a** direction, apparently related to the orientation of H-bonds. This results in an anisotropic deformation of the unit cell and an increase of the *a* parameter in the HP phase at 4.9 GPa, as well as a decrease of linear compressibility along **a** upon the further compression up to 6 GPa ($\beta_a:\beta_b:\beta_c = 5:9:10$).

Keywords: Cordierite, high pressure, compressibility, pressure-induced hydration, crystal structure