American Mineralogist, Volume 97, pages 1330–1338, 2012

Thermodynamics of the magnetite-ulvöspinel (Fe₃O₄-Fe₂TiO₄) solid solution

KRISTINA I. LILOVA,¹ CAROLYN I. PEARCE,² CHRISTOPHER GORSKI,³ KEVIN M. ROSSO,² AND ALEXANDRA NAVROTSKY^{1,*}

¹Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, California 95616, U.S.A.
²Pacific Northwest National Laboratory, Richland, Washington 99352, U.S.A.
³Eawag, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland

ABSTRACT

The thermodynamics of mixing and its dependence on cation distribution in the Fe₃O₄–Fe₂TiO₄ (magnetite-ulvöspinel) spinel solid solution were studied using high-temperature oxide melt solution calorimetry and a range of structural and spectroscopic probes. The enthalpies of formation of ilmenite and ulvöspinel from the oxides and from the elements were obtained using oxidative drop solution calorimetry at 973 K in molten sodium molybdate. The enthalpy of mixing, determined from the fit to the measured enthalpies of drop solution calorimetry, is endothermic and represented by a quadratic formalism, $\Delta H_{mix} = (22.60 \pm 8.46)x(1-x)$ kJ/mol, where *x* is the mole fraction of ulvöspinel. The entropies of mixing are more complex than those for a regular solution and have been calculated based on average measured and theoretical cation distributions. Calculated free energies of mixing show evidence for a solvus at low temperature in good agreement with that observed experimentally. **Keywords:** Titanomagnetite, magnetite-ulvöspinel solid solution, enthalpies of mixing, calorimetry