Crystal chemistry of Ti-rich fluorophlogopite from Presidente Olegario, Alto Paranaíba igneous province, Brazil

E. SCHINGARO,¹ M. LACALAMITA,¹ F. SCORDARI,^{1,*} M.F. BRIGATTI,² AND G. PEDRAZZI³

¹Dipartimento Geomineralogico, Università degli Studi di Bari, via E. Orabona 4, I-70125 Bari, Italy ²Dipartimento di Scienze della Terra, Università di Modena e Reggio Emilia, p.zza S. Eufemia 19, I-41100 Modena, Italy ³Dipartimento di Sanità Pubblica, Sezione di Fisica, Plesso Biotecnologico Integrato, Università di Parma, via Volturno 39, I-43100, Parma, Italy

ABSTRACT

Trioctahedral micas from kamafugitic lavas of Presidente Olegario (Brazil) are Ti-Fe-bearing fluorophlogopites. They were investigated using a combination of electron probe microanalysis (EPMA), single-crystal X-ray diffraction (SCXRD), and Mössbauer spectroscopy.

EPMA data yielded the following ranges: Al₂O₃ (8.7–10.1 wt%), MgO (19.6–20.6 wt%), FeO (5.7–6.5 wt%), TiO₂ (5.9–7.5 wt%), K₂O (8.9–9.7 wt%), Na₂O (0.4–0.6 wt%), and fluorine (3.4–4.1 wt%). Mössbauer investigation indicated: ^{VI}Fe²⁺ ~ 60%, ^{VI}Fe³⁺ ~ 10%, ^{IV}Fe³⁺ ~ 30%. X-ray analysis indicated the 1*M* polytype, with cell parameters in the range *a* = 5.3208–5.3376, *b* = 9.2210–9.2464, *c* = 10.1227–10.155 Å, β = 100.157–100.194°. Structure refinements using anisotropic displacement parameters were performed in space group *C*2/*m* and converged to 2.01 ≤ *R*₁ ≤ 3.51, 2.00 ≤ *wR*₂ ≤ 3.51%.

The micas have no ^{VI}Al³⁺ and Na is probably partitioned over both interlayer and octahedral sites. Major substitutions are OH⁻ \leftrightarrow F⁻, and the Ti-oxy substitution: ^{VI}M²⁺ + 2(OH)⁻ \leftrightarrow ^{VI}Ti⁴⁺ + 2O²⁻ + H₂↑. Accordingly, the structural features of the studied micas encompass those typical of both fluorophlogopites and micas affected by Ti-oxy substitution.

Keywords: Ti-fluorophlogopite, Mössbauer spectroscopy, crystal chemistry, substitution mechanisms