Structure of walstromite, BaCa₂Si₃O₉, and its relationship to CaSiO₃-walstromite and wollastonite-II

MADISON C. BARKLEY,* ROBERT T. DOWNS, AND HEXIONG YANG

Department of Geosciences, University of Arizona, Tucson, Arizona 85721-0077, U.S.A.

ABSTRACT

The crystal structure of walstromite, ideally BaCa₂Si₃O₉, was refined with data from single-crystal X-ray diffraction on a natural specimen from the type locality Esquire No. 8 claim, Big Creek, Fresno County, California, U.S.A. It is triclinic, with space group PT and unit-cell parameters a = 6.7335(2), b = 9.6142(3), c = 6.6859(2) Å, $\alpha = 69.638(2)^\circ$, $\beta = 102.281(2)^\circ$, $\gamma = 96.855(2)^\circ$, and V = 396.01(2) Å³. The only previously published structure for walstromite was based on photographic film intensity data collected from synthetic BaCa₂Si₃O₉ (Dent Glasser and Glasser 1968). Due to uncertainty in oxygen positions, the reported final R-factor was 0.16. The current refinement yielded an R-factor of 0.030 with the inclusion of anisotropic displacement parameters.

Walstromite is a Ba-Ca cyclosilicate characterized by Si_3O_9 three-membered rings. It is related to the important calcium silicate group of minerals, especially to $CaSiO_3$ -walstromite, through the substitution of Ba into one of the three distinct Ca sites. Joswig et al. (2003) suggested that the structural changes caused by the replacement of Ba^{2+} by Ca^{2+} are minimal and that walstromite is isomorphic with $CaSiO_3$ -walstromite, but topologically different from high-pressure wollastonite-II ($Ca_3Si_3O_9$). Our study demonstrates that wollastonite-II and $CaSiO_3$ -walstromite are identical phases, and are isostructural with walstromite. This isomorphism implies that the high-pressure $CaSiO_3$ phase may be a potential host for large cations in deep Earth environments.

Keywords: Walstromite, CaSiO₃-walstromite, wollastonite-II, crystal structure, single-crystal X-ray diffraction