Identification and characterization of nanosized tripuhyite in soil near Sb mine tailings

SATOSHI MITSUNOBU,^{1,*} YOSHIO TAKAHASHI,^{2,3} SATOSHI UTSUNOMIYA,⁴ MATTHEW A. MARCUS,⁵ YASUKO TERADA,⁶ TAKERU IWAMURA,¹ AND MASAHIRO SAKATA¹

 ¹Institute for Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
²Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
³Laboratory for Multiple Isotope Research for Astro- and Geochemical Evolution (MIRAGE), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
⁴Department of Chemistry, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
⁵Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, U.S.A.
⁶SPring-8, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5158, Japan

ABSTRACT

In soil near tailings from an antimony (Sb) mine, we found micro-grains coated with an antimonyrich layer. These grains were characterized in detail using multiple advanced analytical techniques such as micro-X-ray absorption near edge structure (μ -XANES), micro-extended X-ray absorption fine structure (μ -EXAFS), micro-X-ray diffraction (μ -XRD), transmission electron microscope (TEM), and electron probe microanalysis (EPMA). The EPMA showed that one soil grain (grain A) locally accumulated a large amount of Sb in the secondary phases (40–61 wt% Sb₂O₃) with significant Fe (20–28 wt% Fe₂O₃). The spatial distribution of Sb in the grain was similar to that of iron. Both Fe μ -XANES and μ -XRD of the Sb hot spots in grain A consistently showed that the secondary products were dominantly composed of ferric antimonate, tripuhyite (FeSbO₄). Fits to the Sb *K*-edge μ -EXAFS of this phase showed second-neighbor coordination numbers ~30% smaller than in bulk tripuhyite, indicating that the tripuhyite included in grain A is nanoparticulate and/or has a high structural disorder. The TEM analysis suggests that the particle size of tripuhyite in grain A was around 10 nm, which is consistent with the size range indicated by μ -XRD and μ -EXAFS. This is the first report showing tripuhyite with nanocrystallinity in natural soil to date.

Keywords: Antimony, tripuhyite, micro-XAFS, micro-XRD, HRTEM