The thermal equation of state of FeTiO₃ ilmenite based on in situ X-ray diffraction at high pressures and temperatures

E.J. TRONCHE,^{1,*} M. VAN KAN PARKER,¹ J. DE VRIES,^{1,2} Y. WANG,³ T. SANEHIRA,³ J. LI,⁴ B. CHEN,⁵ L. GAO,⁶ S. KLEMME,⁷ C.A. MCCAMMON,⁸ AND W. VAN WESTRENEN¹

¹Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
²Faculty of Geosciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands
³Center for Advanced Radiation Sources, University of Chicago, 5640 Ellis Avenue, Chicago, Illinois 60637, U.S.A.
⁴Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.
⁵Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A.
⁶Department of Geology, University of Illinois Urbana-Champaign, 1301 West Green Street, Illinois 61801, U.S.A.
⁷Institut für Mineralogie, Corrensstrasse 24, D-48149 Münster, Germany
⁸Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany

ABSTRACT

We present in situ measurements of the unit-cell volume of a natural terrestrial ilmenite (Jagersfontein mine, South Africa) and a synthetic reduced ilmenite (FeTiO₃) at simultaneous high pressure and high temperature up to 16 GPa and 1273 K. Unit-cell volumes were determined using energy-dispersive synchrotron X-ray diffraction in a multi-anvil press. Mössbauer analyses show that the synthetic sample contained insignificant amounts of Fe³⁺ both before and after the experiment. Results were fit to Birch-Murnaghan thermal equations of state, which reproduce the experimental data to within 0.5 and 0.7 GPa for the synthetic and natural samples, respectively. At ambient conditions, the unit-cell volume of the natural sample [$V_0 = 314.75 \pm 0.23$ (1σ) Å³] is significantly smaller than that of the synthetic sample [$V_0 = 319.12 \pm 0.26$ Å³]. The difference can be attributed to the presence of impurities and Fe³⁺ in the natural sample. The 1 bar isothermal bulk moduli K_{T0} for the reduced ilmenite is slightly larger than for the natural ilmenite (181 ± 7 and 165 ± 6 GPa, respectively), with pressure derivatives $K'_0 = 3 \pm 1$. Our results, combined with literature data, suggest that the unit-cell volume of reduced ilmenite is significantly larger than that of oxidized ilmenite, whereas their thermoelastic parameters are similar. Our data provide more appropriate input parameters for thermo-chemical models of lunar interior evolution, in which reduced ilmenite plays a critical role.

Keywords: Ilmenite, equation of state, X-ray diffraction, lunar magma ocean