Coulsellite, CaNa₃AlMg₃F₁₄, a rhombohedral pyrochlore with 1:3 ordering in both A and B sites, from the Cleveland Mine, Tasmania, Australia

W. GUS MUMME,¹ IAN E. GREY,^{1,*} WILLIAM D. BIRCH,² ALLAN PRING,³ CATHERINE BOUGEROL,⁴ AND NICHOLAS C. WILSON¹

¹CSIRO Minerals, Box 312, Clayton South, Victoria 3169, Australia
²Geosciences Section, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
³Department of Mineralogy, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
⁴Equipe CEA-CNRS NPSC SP2M/DRFMC/CEA, 17 rue des Martyrs, 38054 Grenoble, France

ABSTRACT

Coulsellite, CaNa₃AlMg₃F₁₄, from the Cleveland tin mine at Luina, western Tasmania, has a rhombohedral distortion of the cubic pyrochlore $A_2B_2X_6Y$ structure, with a = 7.1756(1) Å, $\alpha = 59.867(1)^\circ$, space group $R\overline{3}m$, Z = 1. The corresponding hexagonal cell parameters are a = 7.1620(1) Å, c = 17.5972(3) Å. The crystals are multiply twinned about threefold axes of the pseudocubic cell. The structure was determined using X-ray data collected on a twinned crystal and refined to $R_{obs} = 0.027$ for 452 observed reflections with $I > 2\sigma(I)$. The structure is possibly unique among published structures of pyrochlore-like minerals in having full 1:3 ordering of Ca:Na in the A sites and Al:Mg in the B sites. Transmission electron photomicrographs show a nanodomain structure due to twinning on a scale of ~5 nm.

Keywords: Rhombohedral pyrochlore, new fluoride mineral, structure determination, 1:3 cation ordering in $CaNa_3AIMg_3F_{14}$