Toturite Ca₃Sn₂Fe₂SiO₁₂—A new mineral species of the garnet group

IRINA O. GALUSKINA,^{1,*} EVGENY V. GALUSKIN,¹ PIOTR DZIERŻANOWSKI,² VIKTOR M. GAZEEV,³ KRYSTIAN PRUSIK,⁴ NIKOLAI N. PERTSEV,³ ANTONI WINIARSKI,⁵ ALEKSANDR E. ZADOV,⁶ AND ROMAN WRZALIK⁵

¹Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland

²Institute of Geochemistry, Mineralogy and Petrology, Warsaw University, al. Żwirki i Wigury 93, 02-089 Warszawa, Poland ³Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM), Russian Academy of Sciences, Staromonetny 35, 119017 Moscow, Russia

⁴Faculty of Materials Science, University of Silesia, Bankowa 9, 40-007 Katowice, Poland

⁵August Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland

⁶OOO Science-Research Center NEOCHEM, Dmitrovskoye Highway 100/2, 127238 Moscow, Russia

ABSTRACT

A new Sn-rich garnet, toturite Ca₃Sn₂Fe₂SiO₁₂, occurs as an accessory mineral in high-temperature altered carbonate-silicate xenoliths in ignimbrite of the Upper Chegem structure in the Northern Caucasus, Kabardino-Balkaria, Russia. The empirical formula of toturite from the holotype sample is (Ca_{2.989}Fe²⁺₂₀₁₁)₂₃(Sn⁴⁺₄₆₃Sb⁵⁺₅₃₂Ti⁴⁺_{0.193}Zr_{0.013}Mg_{0.003}Nb⁵⁺_{0.002}Cr_{0.001})₂₂(Fe³⁺_{1.633}Al_{0.609}Si_{0.552}Ti⁴⁺_{0.039}V⁵⁺_{0.001})₂₃O₁₂. The mineral forms thin regular growth zones and irregular spots in the Fe³⁺-dominant analog of kimzeyite. Toturite is cubic, *Ia*3*d*, *a* ≈ 12.55 Å, as is confirmed by electron backscatter diffraction (EBSD) data. The strongest lines of the calculated powder diffraction pattern are [*d*, Å (*hkl*) *I*]: 2.562 (422) 100, 1.677 (642) 91, 3.138 (400) 74, 4.437 (220) 67, 1.146 (10.4.2) 31, 1.046 (884) 25, 1.984 (620) 23. Raman spectra of toturite are analogous to those of kimzeyite and shows the following diagnostic bands (cm⁻¹): 244, 301, 494, 497, 575, 734. The association of toturite with larnite, rondorfite, wadalite, magnesioferrite, lakargiite, and cuspidine indicates a high temperature (>800 °C) of formation. The mineral name is given after the Totur River situated in Eltyubyu village, also Totur is the name of a Balkarian god.

Keywords: Garnet, toturite, Fe³⁺-dominant analog of kimzeyite, Sn, Sb, Raman spectroscopy, EBSD, Lakargi Mountain, Russia