Elbrusite-(Zr)—A new uranian garnet from the Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia

IRINA O. GALUSKINA,^{1,*} EVGENY V. GALUSKIN,¹ THOMAS ARMBRUSTER,² BILJANA LAZIC,² JOACHIM KUSZ,³ PIOTR DZIERŻANOWSKI,⁴ VIKTOR M. GAZEEV,⁵ NIKOLAI N. PERTSEV,⁵ KRYSTIAN PRUSIK,⁶ ALEKSANDR E. ZADOV,⁷ ANTONI WINIARSKI,³ ROMAN WRZALIK,³ AND ANATOLY G. GURBANOV⁵

¹Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland

²Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland ³August Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland ⁴Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, al. Żwirki i Wigury 93, 02-089 Warszawa, Poland ⁵Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM), Russian Academy of Sciences, Staromonetry 35, 119017 Moscow, Russia

> ⁶Institute of Materials, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland ⁷OOO Science-Research Center NEOCHEM, Dmitrovskoye Highway 100/2, 127238 Moscow, Russia

ABSTRACT

Elbrusite-(Zr) Ca₃(U⁶⁺Zr)(Fe₂³⁺Fe²⁺)O₁₂, a new uranian garnet ($Ia\overline{3}d$, $a \approx 12.55$ Å, $V \approx 1977$ Å³, Z = 8), within the complex solid solution elbrusite-kimzeyite-toturite Ca₃(U,Zr,Sn,Ti,Sb,Sc,Nb...)₂(Fe,Al,Si,Ti)₃O₁₂ was discovered in spurite zones in skarn xenoliths of the Upper Chegem caldera. The empirical formula of holotype elbrusite-(Zr) with 25.14 wt% UO₃ is (Ca_{3.040}Th_{0.018}Y_{0.001})_{E3.059}(U⁶⁺_{0.658}Zr_{1.040}Sn_{0.230} Hf_{0.009}Mg_{0.004})_{E1.941} (Fe³⁺_{1.575}Fe²⁺_{0.559}Al_{0.539} Ti⁴⁺_{0.199}Si_{0.099}Sn_{0.025}V⁵⁺_{0.004})_{E3}O₁₂. Associated minerals are spurite, rondorfite, wadalite, kimzeyite, perovskite, lakargiite, ellestadite-(OH), hillebrandite, afwillite, hydrocalumite, ettringite group minerals, and hydrogrossular. Elbrusite-(Zr) forms grains up to 10–15 µm in size with dominant {110} and minor {211} forms. It often occurs as zones and spots within Fe³⁺-dominant kimzeyite crystals up to 20–30 µm in size. The mineral is dark-brown to black with a brown streak. The density calculated on the basis of the empirical formula is 4.801 g/cm³ The following broad bands are observed in the Raman spectra of elbrusite-(Zr): 730, 478, 273, 222, and 135 cm⁻¹. Elbrusite-(Zr) is radioactive and nearly completely metamict. The calculated cumulative dose (α -decay events/mg) of the studied garnets varies from 2.50 × 10¹⁴ [is equivalent to 0.04 displacement per atom (dpa)] for uranian kimzeyite (3.36 wt% UO₃), up to 2.05 × 10¹⁵ (0.40 dpa) for elbrusite-(Zr) with 27.09 wt% UO₃.

Keywords: Elbrusite-(Zr), new garnet, uranium, solid solution, metamictization, Raman spectroscopy, EBSD, Upper Chegem caldera