Inverse spinel structure of Co-doped gahnite

JASMINKA POPOVIĆ,^{1,*} EMILIJA TKALČEC,² BISERKA GRŽETA,¹ STANISLAV KURAJICA,² AND BORIS RAKVIN³

¹Division of Materials Physics, Ruđer Bošković Institute, P.O. Box 180, HR-10002 Zagreb, Croatia ²Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia ³Division of Physical Chemistry, Ruđer Bošković Institute, P.O. Box 180, HR-10002 Zagreb, Croatia

ABSTRACT

Powder ZnAl₂O₄ (gahnite) samples doped with 0–100 at% Co were obtained by a sol-gel technique. X-ray powder diffraction was used to characterize the samples. Gahnite samples are cubic with the normal spinel structure, space group $Fd\overline{3}m$. Cobalt doping caused a nonuniform increase of unit-cell parameter. The structure of the gahnite samples was refined by the Rietveld method. The location of Co²⁺ was determined by EPR spectroscopy. Cobalt doping of gahnite induces the inverse spinel structure at only 4 at% Co, and the inversion parameter increases with Co²⁺ doping level. Metal-oxide distances in the (Al,Co)O₆ octahedra dominantly influence the unit-cell parameter of Co-doped gahnite.

Keywords: Co-doped gahnite, spinel structure, X-ray powder diffraction, Rietveld method