Joëlbruggerite, Pb₃Zn₃(Sb⁵⁺,Te⁶⁺)As₂O₁₃(OH,O), the Sb⁵⁺ analog of dugganite, from the Black Pine mine, Montana

STUART J. MILLS,^{1,*} UWE KOLITSCH,² RITSURO MIYAWAKI,³ LEE A. GROAT,¹ AND GLENN POIRIER⁴

¹Department of Earth and Ocean Sciences, University of British Columbia, 6339 Stores Road, Vancouver, British Columbia V6T 1Z4, Canada

²Mineralogisch-Petrographische Abteilung, Naturhistorisches Museum Wien, Burgring 7, A-1010 Wien, Austria

³Department of Geology, National Museum of Nature and Science, 3-23-1, Hyakunin-cho, Shinjuku, Tokyo 169-0073, Japan

⁴Mineral Sciences Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada

ABSTRACT

Joëlbruggerite, ideally Pb₃Zn₃(Sb⁵⁺,Te⁶⁺)As₂O₁₃(OH,O), is a new arsenate mineral (IMA 2008-034) and the Sb5+ analog of dugganite, from the Black Pine mine, 14.5 km northwest of Philipsburg, Granite County, Montana. It is usually found perched on mimetite; other species that may be present include malachite, azurite, pseudomalachite, chalcocite, beudantite-corkite, duftite, dugganite, and kuksite, in milky quartz veins. Joëlbruggerite occurs as barrel-shaped or prismatic crystals up to about 50 µm across in various shades of purple. The crystals have an adamantine luster and a white streak. Mohs hardness is about 3. The fracture is irregular, and the tenacity is brittle. Joëlbruggerite crystals are uniaxial (-), with a calculated refractive index of n = 1.993, and weakly pleochroic: X = Y = gray, Z= purple; absorption: Z > X = Y. Crystals show straight extinction and are length-fast. The empirical chemical formula (mean of 5 electron microprobe analyses) calculated on the basis of 14 [O + OH]anions is $Pb_{3,1/2}(Zn_{2,689}Fe_{0,185}^{2+})_{\Sigma_{2,874}}(Sb_{0,650}^{5+}Te_{0,451}^{6+})_{\Sigma_{1,101}}(As_{1,551}P_{0,203}Si_{0,160})_{\Sigma_{1,914}}O_{13,335}(OH)_{0,665}$. Joëlbruggerite is trigonal, space group P321, a = 8.4803(17), c = 5.2334(12) Å, V = 325.94(12) Å³, Z = 1. The five strongest lines in the powder X-ray diffraction pattern are $[d_{obs} \text{ in } \text{\AA}(I)(hkl)]$: 3.298 (100) (111), 3.008 (89) (021), 1.905 (39) (122, 131), 2.456 (36) (012, 121, 030), and 1.609 (30) (112, 132, 231, 140). The crystal structure was solved from single-crystal X-ray diffraction data and refined to $R_1 = 0.038$ on the basis of 604 unique reflections with $F > 4\sigma(F)$. It is composed of heteropolyhedral sheets of edge-sharing (Sb,Te) O_6 octahedra and PbO₈ disphenoids, oriented parallel to (001). The sheets are cross-linked by AsO₄ and ZnO₄ tetrahedra, which share corners to form an interlinked, two- and threeconnected two-dimensional net parallel to (001). The mineral is named for Joël Brugger (born 1967), Swiss-Australian mineralogist, for his contributions to mineralogy.

Keywords: Joëlbruggerite, new mineral, Sb⁵⁺, arsenate, Black Pine mine, dugganite, crystal structure, bond valence