The crystal structure and hydrogen bonding of synthetic konyaite, Na₂Mg(SO₄)₂·5H₂O

EVELYNE M.S. LEDUC,^{1,*} RONALD C. PETERSON,¹ AND RUIYAO WANG²

¹Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada ²Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada

ABSTRACT

The crystal structure of synthetic konyaite, Na₂Mg(SO₄)₂·5H₂O, a = 5.7690(8), b = 23.951(3), c = 8.0460(11) Å, $\beta = 95.425(2)^\circ$, V = 1106.8(3) Å³, space group $P2_1/c$, Z = 4, was solved using singlecrystal X-ray diffraction. Hydrogen atom positions were determined and the structure solution was refined to $R_1 = 3.31\%$ and $wR_2 = 6.28\%$ for the 2167 measured independent reflections. Three distinct cation sites host the Mg and Na atoms in distorted octahedra and eight-coordinated polyhedra. The coordination polyhedra share edges to form compact sheets oriented perpendicular to *b* and linked to one another by hydrogen bonds. This results in a {010} tabular habit. A comparison of this structure is made to that of blödite [Na₂Mg(SO₄)₂·4H₂O], the dehydration product of konyaite. Konyaite is discussed within the context of the Na₂O-MgO-SO₄-H₂O system. This study is part of ongoing investigations into the dehydration mechanisms and phase stability of this system.

Keywords: Konyaite, crystal structure, single-crystal X-ray diffraction, hydrogen bonding, blödite, dehydration, phase stability