High-pressure ammonium-bearing silicates: Implications for nitrogen and hydrogen storage in the Earth's mantle

ANKE WATENPHUL,* BERND WUNDER, AND WILHELM HEINRICH

Deutsches GeoForschungsZentrum (GFZ), Section 4.1, Telegrafenberg, 14473 Potsdam, Germany

ABSTRACT

The ammonium analogues of the high-pressure potassium-bearing silicate phases K-hollandite, K-Si-wadeite, K-cymrite, and phengite were synthesized in the system (NH₄)₂O(-MgO)-Al₂O₃-SiO₂-H₂O [N(M)ASH] using multi-anvil and piston-cylinder equipment. Syntheses included NH₄-hollandite (NH₄AlSi₃O₈) at 12.3 GPa, 700 °C; NH₄-Si-wadeite [(NH₄)₂Si₄O₉] at 10 GPa, 700 °C; NH₄-cymrite (NH₄AlSi₃O₈) at 12.3 GPa, 800 °C; and NH₄-phengite [NH₄(Mg_{0.5}Al_{1.5})(Al_{0.5}Si_{3.5})O₁₀(OH)₂] at 4 GPa, 700 °C. Run products were characterized by SEM, FTIR, and powder XRD with Rietveld refinements. Cell parameters of the new NH₄ end-members are: *a* = 9.4234(9) Å, *c* = 2.7244(3) Å, *V* = 241.93(5) Å³ (NH₄-hollandite); *a* = 6.726(1) Å, *c* = 9.502(3) Å, *V* = 372.3(1) Å³ (NH₄-Si-wadeite); *a* = 5.3595(3) Å, *c* = 7.835(1) Å, *V* = 194.93(5) Å³ (NH₄-cymrite). NH₄-phengite consisted of a mixture of 1*M*, 2*M*₁, 2*M*₂, 3*T*, and 2*Or* polytypes. The most abundant polytype, 2*M*₁, has cell dimensions *a* = 5.2195(9) Å, *b* = 9.049(3) Å, *c* = 20.414(8) Å, β = 95.65(3)°, *V* = 959.5(5) Å³. All unit-cell volumes are enlarged in comparison to the potassium analogues. Substitution of NH₄ for K does not cause changes in space group. NH₄ incorporation was confirmed by the appearance of NH₄-vibration modes v₄ and v₃ occurring in the ranges of 1397–1459 and 3223–3333 cm⁻¹, respectively.

Ammonium in eclogite facies metasediments is mainly bound in micas and concentrations may reach up to a few thousand parts per million. It can be stored to greater depths in high-pressure potassium silicates during ongoing subduction. This possibly provides an important mechanism for nitrogen and hydrogen transport into the deeper mantle.

Keywords: Hollandite, wadeite, cymrite, phengite, ammonium, high-pressure synthesis, nitrogen cycle