Excess heat capacity and entropy of mixing in high structural state plagioclase

ARTUR BENISEK,^{1,*} EDGAR DACHS,¹ AND HERBERT KROLL²

¹Materialforschung und Physik, Universität Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria ²Institut für Mineralogie, Westfälische Wilhelms-Universität, Corrensstr. 24, D-48149 Münster, Germany

ABSTRACT

Low- and high-temperature heat capacities for a series of synthetic high structural state plagioclase crystals (Ab-An) were measured using both a relaxation calorimeter and a differential scanning calorimeter. The measurements were performed at temperatures between 5 and 800 K on milligram-sized polycrystalline samples that had been characterized in a previous study. The data show positive excess heat capacities of mixing at temperatures below 300 K with a maximum value of ~2 J/(mol·K). Below ~70 K, the excess heat capacities exceed two standard deviations and are thus significant. Above 300 K, the measurements indicate negative excess heat capacities with a maximum of ca. -1.5 J/(mol·K) at about 400 K, and do not exceed two standard deviations. The excess vibrational entropies of mixing are positive with an asymmetric variation. At T = 298.15 K, the largest deviation from ideal behavior occurs at Ab₂₀An₈₀ amounting to $\Delta S_{vik}^{vib} = 2.8 \pm 2.4$ J/(mol·K). An asymmetric Margules mixing model was found to adequately describe the vibrational entropy-composition behavior, yielding $W_{AbAn}^{vib} = 16.4$ J/(mol·K).

Keywords: Feldspar, plagioclase solid solution, low- and high-temperature heat capacity, excess heat capacity of mixing, vibrational entropy of mixing