American Mineralogist, Volume 93, pages 1682–1685, 2008

LETTER

An isosymmetric phase transition of orthopyroxene found by high-temperature X-ray diffraction

Shugo Ohi,^{1,*} Akira Miyake,¹ Norimasa Shimobayashi,¹ Masatomo Yashima,² and Masao Kitamura¹

¹Department of Geology and Mineralogy, Division of Earth and Planetary Sciences, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

²Department of Materials Science and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama 226-8502, Japan

ABSTRACT

High-temperature synchrotron X-ray powder diffraction experiments for the composition of $(Ca_{0.06}Mg_{1.94})Si_2O_6$ have been carried out in the present study to clarify whether orthopyroxene has a transition between low- and high-temperature phases. Our results show that discontinuous changes of unit-cell dimensions and volume occur at 1170 °C during both heating and cooling processes and that the space group of *Pbca* does not change during this reversible phase transition. These facts indicate a first-order and isosymmetric phase transition. This high-temperature phase is thermodynamically distinct from the low-temperature phase, i.e., orthoenstatite in the Mg-rich portion of Mg₂Si₂O₆-CaMgSi₂O₆ phase diagram, although they have the same space group.

Keywords: Orthopyroxene, isosymmetric phase transition, in-situ X-ray experiments, enstatitediopside system