Compression, thermal expansion, structure, and instability of CaIrO₃, the structure model of MgSiO₃ post-perovskite

C. DAVID MARTIN,^{1,*} KARENA W. CHAPMAN,² PETER J. CHUPAS,² VITALI PRAKAPENKA,³ PETER L. LEE,² SARVJIT D. SHASTRI,² AND JOHN B. PARISE^{1,4}

¹Geosciences Department, 255 Earth and Space Sciences Building, Stony Brook University, Stony Brook, New York 11794-2100, U.S.A.
²X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.
³GeoSoil and EnviroCARS (GSECARS), Sector 13, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.
⁴Chemistry Department, Stony Brook University, Stony Brook, New York 11794-3400, U.S.A.

ABSTRACT

Analysis of pressure-temperature dependent monochromatic X-ray powder diffraction data yield the bulk modulus [$K_{\rm T} = 180.2(28)$ GPa] and thermal expansion coefficients [$\alpha_0 = 2.841(34) \times 10^{-5}$ K^{-1} ; $\alpha_1 = 3.37(48) \times 10^{-9}$ K^{-2}] of CaIrO₃, the structure model for post-perovskite MgSiO₃. CaIrO₃ is orthorhombic (*Cmcm*, space group 63, Z = 4) with best-fit unit-cell parameters, a = 3.14147(5) Å, b = 9.87515(19), c = 7.29711(11), and V = 226.3754(78) Å³ at 1 bar and 300 K. The **c**-axis of CaIrO₃ has a small compressibility and a large thermal expansion when compared to the other principal axes. Rietveld structure refinement reveals changes in CaIrO₃ as a function of temperature in terms of IrO₆ octahedra distortion. Dissociation of CaIrO₃ at high temperature has possible implications for the post-perovskite MgSiO₃ structure, Earth's lower mantle, and D" layer.

Keywords: Post-perovskite, CaIrO₃, pressure, temperature, structure, X-rays, Rietveld refinement, D" layer