Cation ordering in MgTi₂O₅ (karrooite): Probing temperature dependent effects with neutrons

ALISTAIR R. LENNIE,^{1,*} KEVIN S. KNIGHT,² AND C. MICHAEL B. HENDERSON^{1,3}

¹CCLRC Daresbury Laboratory, Keckwick Lane, Warrington, Cheshire, WA4 4AD, U.K. ²ISIS, CCLRC Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, U.K. ³School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.

ABSTRACT

MgTi₂O₅ (karrooite) exhibits cation exchange between the two non-equivalent octahedral M1 and M2 sites. The temperature dependence of Ti-Mg disorder has been determined using in situ timeof-flight powder neutron diffraction to establish the cation population of each site. The equilibrium Ti-Mg exchange commences above 700–800 °C, and continues up to 1300 °C. At ~1350 °C MgTi₂O₅ appears to undergo a reversible, displacive phase transition, although the structure can still be refined in space group 63. This transition shows discontinuities in the degree of order, the *c* cell parameter, and in the M-O bond lengths, quadratic elongation, and bond angle variance for the M1 octahedron, which becomes pseudo-tetrahedral. By contrast, the M2 octahedron shows no significant change. An Arrhenius plot exhibits linear behavior from 750–1300 °C, gives an exchange enthalpy of ordering of 33.6 kJ/mol, and a value of 10.7 kJ/mol for the entropy of disordering. A value of 5.92 cm³/mol is deduced for the ΔV of the high-temperature reaction of geikielite (MgTiO₃) + rutile (TiO₂) to form fully disordered MgTi₂O₅ at an extrapolated temperature of 1860 °C.

Keywords: Crystal structure, high-temperature, neutron diffraction, order-disorder, oxides, karrooite, rutile, geikielite