American Mineralogist, Volume 91, pages 171-181, 2006

The kinetics of the $\alpha \rightarrow \beta$ transition in synthetic nickel monosulfide Haipeng Wang,^{1,2,*} Allan Pring,^{2,3} Yung Ngothai,¹ and Brian O'Neill¹

¹School of Chemical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia ²Department of Mineralogy, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia ³ School of Earth and Environmental Science, University of Adelaide, Adelaide, South Australia 5005, Australia

ABSTRACT

The kinetic behavior of the α -Ni_{1-x}S $\rightarrow \beta$ -NiS transition was investigated via a series of annealquench experiments using Rietveld quantitative phase analysis of powder X-ray diffraction data. Initial compositions of α -Ni_{1-x}S were found to play an important role in the kinetics of the transition. The activation energy (E_a) for this α - to β -phase transition is 16.0 (±0.5) kJ/mol for NiS in the temperature range 343 to 423 K, and 13.0 (±0.5) kJ/mol in the temperature range 523 to 623 K. For Ni_{0.97}S, however, E_a decreases from 73.0 (±0.5) to 17.0 (±0.5) kJ/mol over the course of the reaction in the temperature range 573 to 593 K. The relationship between E_a and extent of transition (y) for the initial bulk Ni_{0.97}S was derived using the Refined Avrami method. For Ni-deficient compositions, α -Ni_{1-x}S, the transformation to β -NiS is accompanied by the exsolution of a progressively more Ni-deficient α -Ni_{1-x}S and Ni₃S₄, and the reactions become more sluggish for more metal-deficient compositions.

Keywords: XRD data, NiS, crystal synthesis, α-NiS, kinetics, nickel monosulfide