An experimental determination of the effect of pressure on the Fe³⁺/ΣFe ratio of an anhydrous silicate melt to 3.0 GPa

HUGH ST.C. O'NEILL,¹ ANDREW J. BERRY,¹ CATHERINE C. MCCAMMON,^{1,2} KASTHURI D. JAYASURIYA,^{3,*} STEWART J. CAMPBELL,³ AND GARRY FORAN^{4,5}

¹Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia ²Bayerisches Geoinstitut, Universität Bayreuth, D-95440, Germany

³School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2600, Australia

⁴Australian Synchrotron Research Program, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, Australia ⁵Australian National Beamline Facility, KEK, Photon Factory, Oho 1-1, Tsukuba-shi, Ibaraki-ken 305-0801, Japan

ABSTRACT

The effect of pressure on the Fe³⁺/ Σ Fe ratio of an anhydrous andesitic melt was determined from 0.4 to 3.0 GPa at 1400 °C with oxygen fugacity controlled internally by the Ru + RuO₂ buffer. Values of Fe³⁺/ Σ Fe were determined by Mössbauer spectroscopy on quenched glasses with a precision of ±0.01, one standard deviation. This precision was verified independently by XANES spectroscopy of the same samples. The XANES spectra show a systematic increase in energy and decrease in intensity of the 1s → 3d transition with increasing pressure. The results to 2.0 GPa are in good agreement with predictions from density and compressibility measurements fitted to a Murnaghan equation of state, but the datum at 3.0 GPa has higher Fe³⁺/ Σ Fe than predicted from the trend established by the lower-pressure data. This might be due to a coordination change in Fe³⁺ at high pressure; although there is no evidence for this in the Mössbauer spectra, such a change could account for the change in intensity of the 1s → 3d transition in the XANES spectra with pressure.

Keywords: redox ratio, silicate melt, XANES, Mössbauer, experimental petrology