The mechanism and kinetics of α -NiS oxidation in the temperature range 670–700 °C

HAIPENG WANG,^{1,*} ALLAN PRING,^{2,3} YUNG NGOTHAI,⁴ AND BRIAN O'NEILL⁴

¹Commonwealth Scientific and Industrial Research Organization, PO Box 90, Bentley, W.A. 6982, Australia ²Department of Mineralogy, South Australian Museum, North Terrace, Adelaide, S.A. 5000, Australia ³School of Earth and Environmental Science, University of Adelaide, Adelaide, S.A. 5005, Australia ⁴School of Chemical Engineering, University of Adelaide, Adelaide, S.A. 5005, Australia

ABSTRACT

The oxidation behavior of synthetic α -NiS in air has been investigated over the temperature range 670–700 °C. The α -NiS was ground and sieved to give a particle size ranging from 53 to 90 μ m. Three oxidation paths were observed:

(i) α -NiS + 3/2 O₂ \rightarrow NiO + SO₂ (ii) 3 α -NiS +O₂ \rightarrow Ni₃S₂ + SO₂ (iii) Ni₃S₂ + 7/2 O₂ \rightarrow 3NiO + 2SO₂

No Ni₃S₂ (heazlewoodite) was observed over the course of α -NiS oxidation at 670 and 680 °C. The dominant oxidation path at this temperature is path i. At 700 °C, however, all three oxidation paths were observed. As an intermediate oxidation product, Ni₃S₂ steadily exsolved from α -NiS, reaching a maximum quantity after about 80 min of oxidation, declining afterward, and approaching annihilation at 160 min of oxidation. Experimental results show that the exsolution of Ni₃S₂ is likely triggered by the loss of one third of S in the α -NiS structure with the release of SO₂ rather than by an intrinsic thermal decomposition of α -NiS to α -Ni_{1-x}S + Ni₃S₂. The eventual annihilation of Ni₃S₂ was caused by a further oxidation of Ni₃S₂ to NiO. Oxidation paths 2 and 3 form a typical single chain reaction:

$$\alpha$$
-NiS $\xrightarrow{k_1}$ Ni₃S₂ $\xrightarrow{k_2}$ NiO

The approximate values of k_1 are k_2 are $3 \times 10^{-4} \text{s}^{-1}$ and $5 \times 10^{-4} \text{s}^{-1}$ respectively.

Oxidation temperature was found to play important roles both in the oxidation kinetics and the oxidation mechanism. By decreasing 10 °C from 680 to 670 °C, the average reaction rate (dy/dt, where y is the reaction extent) over the experiment time scale almost decreased to one third of its original rate (from 3.3×10^{-5} s⁻¹ to 1.2×10^{-5} s⁻¹). The reaction mechanism in the temperature range 670 to 680 °C is constant with $E_a = 868.2$ kJ/mol.

Keywords: NiS, oxidation, chain reaction, kinetics