Crystal chemistry of the elbaite-schorl series

FERDINANDO BOSI,* GIOVANNI B. ANDREOZZI, MARCELLA FEDERICO, GIORGIO GRAZIANI, AND SERGIO LUCCHESI

Dipartimento di Scienze della Terra, Università degli Studi di Roma "La Sapienza" Piazzale A. Moro 5, 00185 Roma, Italy

ABSTRACT

The crystal-chemistry of 13 elbaite-schorl tourmaline crystals from the Cruzeiro pegmatite (Minas Gerais, Brazil) was studied with a multi-analytical approach (SREF, EMPA, SIMS, MS). Effective cation radii at the Y and Z sites and site populations were refined by a minimization procedure. The results indicate that the crystals belong to the alkali group. Elbaite crystals are O^{2-} -free at the W and V sites and show OH content at the O2 site (up to 0.2 apfu). Conversely, schorl crystals always show O^{2-} at the W site. The main substitutional mechanism is the dehydroxylation type:

 ${}^{\mathrm{Y}}\mathrm{Fe}^{2+} + {}^{\mathrm{Y}}\mathrm{Fe}^{3+} + {}^{\mathrm{W}}\mathrm{O} \rightarrow {}^{\mathrm{Y}}\mathrm{Li} + {}^{\mathrm{Y}}\mathrm{Al} + {}^{\mathrm{W}}\mathrm{OH}\mathrm{+}\mathrm{F}\mathrm{)}.$

The T site is characterized by ${}^{T}Si \rightarrow {}^{T}Al$ substitution. <X-O> is linearly correlated with vacancy content in crystals with (OH + F) \leq 4, whereas it is almost constant in crystals with OH at the O2 position. Along the series, <Y-O> is inversely correlated with ${}^{Y}Al$. The Z site is almost fully occupied by R³⁺ (with ${}^{Z}Al$ largely dominant) and the ${}^{Z}Fe_{tot} \leftrightarrow {}^{Z}Al$ substitution explains the inverse correlation of <Z-O> with ${}^{Z}Al$.

In the elbaite compositional range, lattice parameters are functions of $\langle Y-O \rangle$, whereas in the schorl range they are essentially functions of $\langle Z-O \rangle$. Along the whole elbaite-schorl series, both chemical substitutions and size increase of Y are far larger than those of Z. In spite of this, lattice parameters increase with $\langle Y-O \rangle$ as much as with $\langle Z-O \rangle$. This is due to the role of the [ZO₆] polyhedra, which extend along **a** and **c** to form the skeleton of the tourmaline structure. Therefore, any change in the size of Z leads to a change in the whole structure.