American Mineralogist, Volume 90, pages 115-121, 2005

Ca₂SiO₃OHF—A high-pressure phase with dense calcium polyhedral packing and tetrahedral silicon

KURT LEINENWEBER,^{1,2,*} JENNIFER E. JOHNSON,^{1,2} AND THOMAS L. GROY¹

¹Department of Chemistry, Arizona State University, Tempe, Arizona 85287-1604, U.S.A. ²Department of Geology, Arizona State University, Tempe, Arizona 85287-1604, U.S.A.

ABSTRACT

The composition and structure of a new phase crystallizing in high-pressure experiments in the system CaO-Ca(OH)₂-CaF₂-SiO₂ are described. The composition is on the join Ca₂SiO₃(OH)₂-Ca₂SiO₃F₂, with the relative amounts of OH and F near 50/50 from electron probe microanalysis, or near the ideal midpoint composition Ca₂SiO₃OHF. The symmetry is monoclinic, space group $P2_1/c$, with a = 5.8111(7), b = 10.6050(13), and c = 6.6968(8) Å, and $\beta = 102.025(3)^\circ$, V = 403.65(8) Å³, Z = 4. In the structure isolated SiO₃OH tetrahedral groups occupy narrow linear channels whose axes lie along **a**. The channels are lined by two types of eight-coordinated CaO₃OHF₂ polyhedra that share edges and faces. The axes of the channels lie on a nearly hexagonal array in the **b**-**c** plane, leading to a c_p/b ratio of 0.618, close to the ideal ratio of 0.577 for a hexagonal array. However, there is no simple packing rule for either the cation or anion array. Although the channels are arranged in a nearly hexagonal fashion, the overall symmetry of the structure is not hexagonal, but instead has 5-rings of calcium polyhedra around the channels. The calcium atoms lie on a 5-3-5-3 net of triangles and pentagons that can be compared to the α -U₃O₈ net.