American Mineralogist, Volume 90, pages 672-678, 2005

Direct formation of the γ -CaSO₄ phase in dehydration process of gypsum: In situ FTIR study

P.S.R. PRASAD,^{1,*} V. KRISHNA CHAITANYA,² K. SHIVA PRASAD,¹ AND D. NARAYANA RAO²

¹National Geophysical Research Institute, Hyderabad 500 007, India ²School of Physics, University of Hyderabad, Hyderabad 500 046, India

ABSTRACT

The dehydration mechanism of natural single crystals of gypsum was investigated in the temperature range 300–430 K by in situ infrared (FTIR) spectroscopy. The thermal evolution of the second-order modes of H₂O and SO₄ groups in gypsum, in the wavenumber range 4850–5450 cm⁻¹ and 2050–2300 cm⁻¹ respectively, were used to probe the dehydration and rehydration sequence. A total disappearance of the combination modes of H₂O and the replacement of four SO⁻²₄ bands (2245, 2200, 2133, and 2117 cm⁻¹) observed at room temperature by three bands (2236, 2163, and 2131 cm⁻¹) observed at 390 K indicates the direct formation of γ -CaSO₄ upon heating. Upon cooling water re-enters into the γ -CaSO₄ structure at around 363 K to form bassanite. This observation, that the dehydration of gypsum directly yields γ -CaSO₄ (anhydrite) without the intermediate formation of hemi-hydrate (bassanite), is further corroborated by the dehydration behavior of bassanite. The second-order SO₄ modes of bassanite observed around 2218, 2136, and 2096 cm⁻¹ were replaced with the bands of γ -CaSO₄ at about 378 K upon heating.