Piston-cylinder experiments on H₂O undersaturated Fe-bearing systems: An experimental setup approaching f_{O2} conditions of natural calc-alkaline magmas

RALF KÄGI,¹ OTHMAR MÜNTENER,² PETER ULMER,^{3,*} AND LUISA OTTOLINI⁴

¹Eidgenössische Materialprüfungsanstalt (EMPA), CH-8027 Dübendorf, Switzerland

²Institute of Geological Sciences, University of Bern, CH-3012 Bern, Switzerland

³Institute for Mineralogy and Petrography, ETH Zürich, CH-8092 Zurich, Switzerland

⁴Consiglio Nazionale delle Ricerche-Istituto di Geoscienze e Georisorse (IGG), Sezione di Pavia, I-27100 Pavia, Italy

ABSTRACT

In this study, we present a modified double-capsule technique to perform experiments on H₂O undersaturated, Fe-bearing systems at elevated pressures and temperatures and oxygen fugacities (f_{02}) relevant for natural calc-alkaline magmas. Welded shut, Fe-preconditioned Au₉₀Pd₁₀ capsules were placed in an outer Pt capsule that contains the same starting material. Experiments were performed at 1.0 GPa and 1200 °C using a synthetic, hydrous basalt and run with either boron nitride (BN) or MgO surrounding the welded capsules. Optimum results were obtained by using Fe-preconditioned Au₉₀Pd₁₀ inner capsules in combination with MgO assemblies. The application of the modified double-capsule technique with Fe-preconditioned inner AuPd capsules reduced Fe loss to less than 3% relative, conserved H₂O within the error of ion-microprobe analyses, and kept the f_{02} (QFM+1.1) within 1 log unit of the initial value constrained by the Fe₂O₃/FeO ratio of the starting material (QFM+0.43). These conditions are similar to estimates of f_{02} during the crystallization of natural calc-alkaline magmas.