Calorimetry of liquids in the system Na₂O-Fe₂O₃-SiO₂

TORU SUGAWARA* AND MASAKI AKAOGI

Department of Chemistry, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan

ABSTRACT

Transposed-temperature, drop-calorimetry measurements were performed in the systems Na₂SiO₃-Fe₂O₃-SiO₂ and Na₂SiO₃-NaFeSi₂O₆ at 1373 K to investigate thermodynamic properties of Fe³⁺-bearing silicate liquids. The results confirm previously measured enthalpy of Na₂SiO₃ and SiO₂ melts. No significant heats of mixing were observed in the Na_2SiO_3 -SiO₂ liquids or in peralkaline liquids in the system Na_2SiO_3 -Fe₂O₃. The enthalpy of mixing of peralkaline liquids in the system Na_2SiO_3 - Fe_2O_3 -SiO₂ was less than the standard deviation of drop calorimetry (approx. ±10 kJ/mol). From calorimetric data of Na₂SiO₃-Fe₂O₃ liquids extrapolated to hematite composition and published heat capacity, the enthalpy of fusion of hematite is estimated to be 83.3 ± 10.5 kJ/mol at 1373 K and 133.4 \pm 10.5 kJ/mol at its melting point 1895 K. The Fe³⁺/Fe²⁺ ratio of the liquid was estimated from thermodynamic calculations using the fusion enthalpy of hematite and published data of FeO and O_2 , and reproduced measured Fe³⁺/Fe²⁺ ratios in natural silicate liquids and in CaO-Al₂O₃-Fe₂O₃-FeO-SiO₂ liquids. No significant heats of mixing were observed in the Na₂SiO₃-NaFeSi₂O₆ liquids. The enthalpy of formation of NaFeSi₂O₆ (acmite) at 1bar and 298 K calculated from calorimetric data is -2546.9 \pm 17 kJ/mol. The enthalpy and entropy of fusion of acmite are estimated to be 70.5 \pm 9.4 kJ/mol and 51.3 ± 6.8 J/K-mol, respectively, at metastable congruent melting point, 1373 K. The entropy of fusion of acmite is similar to that of NaAlSi₂O₆ (jadeite), indicating that Fe^{3+} and Al^{3+} have analogous structural roles in pyroxene melts.