A new dense silica polymorph: A possible link between tetrahedrally and octahedrally coordinated silica

SHENG-NIAN LUO,^{1,4} OLIVER TSCHAUNER,^{1,2,*} PAUL D. ASIMOW,³ AND THOMAS J. AHRENS¹

¹Lindhurst Laboratory of Experimental Geophysics, Seismological Laboratory, California Institute of Technology, Pasadena, California 91125, U.S.A.
²High Pressure Science and Engineering Center and Department of Physics, University of Nevada, Las Vegas, Nevada 89154-4002, U.S.A.
³Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A.
⁴Plasma Physics (P-24) and Earth and Environmental Sciences (EES-11), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, U.S.A.

ABSTRACT

We present the discovery of a novel dense silica polymorph retrieved from shock-wave and diamond-anvil cell experiments. This polymorph is the first observed silicate composed of face-sharing polyhedra and it has a density similar to stishovite. Sterical constraints on the bond angles induce an intrinsic disorder of Si positions, such that the Si-coordination is transitional between four- and sixfold. The structure provides a mechanism for this coordination change in silica and other silicates at high temperature that is fundamentally different from mechanisms at 300 K. The new polymorph also illustrates how the face-sharing polyhedra, naturally occurring along previously proposed compression mechanisms for dense silicate melts, can be constructed without inferring unphysically small bond angles.