American Mineralogist, Volume 88, pages 1165-1168, 2003

Studtite, $[(UO_2)(O_2)(H_2O)_2](H_2O)_2$: The first structure of a peroxide mineral Peter C. Burns* and Karrie-Ann Hughes

Department of Civil Engineering and Geological Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, U.S.A.

ABSTRACT

Studite, $UO_4 \cdot 4H_2O$, and metastudite, $UO_4 \cdot 2H_2O$, are the only minerals thought to contain peroxide. Determination of the structure of studite has shown it to contain peroxide, with the structural formula [$(UO_2)(O_2)(H_2O)_2$]($H_2O)_2$. The structure is monoclinic, space group C2/c, a = 14.068(6), b =6.721(3), c = 8.428(4) Å, $\beta = 123.356(6)^\circ$, V = 665.6(3) Å³, Z = 4. It was refined on the basis of F^2 for 1398 unique reflections collected using MoK α X-radiation and a CCD-based detector to $R_1 = 3.66\%$, calculated for the 716 unique observed reflections ($|F_o| \ge 4\sigma_F$). The structure of studite contains one symmetrically distinct U⁶⁺ cation and four O atoms, two of which occur as H₂O groups. The O-O bond-length in the peroxide group is 1.46(1) Å. The U⁶⁺ cation occurs as part of a linear (UO_2)²⁺ uranyl ion, and each U⁶⁺ cation is bonded to six additional O atoms, two of which are H₂O groups, and four of which are O atoms of peroxide groups. The O-O bonds of two peroxide groups constitute two equatorial edges of each distorted uranyl hexagonal bipyramid. Uranyl polyhedra are polymerized into chains extending along [001] by sharing peroxide groups. Chains are linked by H bonds extending to and from an interstitial H₂O group. It is proposed that studite forms by incorporating peroxide created by alpha-radiolysis of water, and that radiation is necessary for its formation in nature.