Structure change of $Ca_{1-x}Sr_xTiO_3$ perovskite with composition and pressure

TAKAMITSU YAMANAKA,* NORIYUKI HIRAI, AND YUTAKA KOMATSU

Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1, Machikaneyama Toyonaka Osaka, 560-0043 Japan

ABSTRACT

Structure refinements of solid solutions of $(Ca_{1-x}Sr_x)TiO_3$ (x = 0.0, 0.25, 0.5, 0.6, 0.65, and 1.0) were undertaken using single crystals at ambient conditions. Their lattice constants, *c/a* axial ratios, and cell volumes indicate continuous changes from orthorhombic to cubic through a tetragonal phase. The orthorhombic structure is continuous between x = 0.0 and x = 0.6, and a phase at x = 0.65 shows a tetragonal structure with space group *I4/mcm*. With increasing Sr substitution, the symmetry changes to cubic with *Pm*3*m* space group. A-O and B-O distances in ABO₃ perovskite were determined as a function of the composition of the A cation (Ca and Sr). Tilting and rotation angles of the TiO₆ octahedral linkage with *x* of (Ca_{1-x}Sr_x)TiO₃ were also evaluated. Single-crystal structure refinements of Ca_{0.35}Sr_{0.65}TiO₃ perovskite at 3.5, 4.1, and 7.0 GPa at 300 K were carried out using a diamond anvil cell. The tetragonal phase transforms to an orthorhombic structure with space group *Pbnm* at 3.5 GPa. The polymorphic transition of ^{VIII}A^{2+VI}B^{4+O}₃ perovskites under compression is discussed.