Compression of synthetic hydroxylclinohumite [Mg₉Si₄O₁₆(OH)₂] and hydroxylchondrodite [Mg₅Si₂O₈(OH)₂]

NANCY L. ROSS* AND WILSON A. CRICHTON[†]

Department of Geological Sciences, University College London, Gower Street, London WC1E 6BT, U.K.

ABSTRACT

The isothermal equations of state (EoS) of synthetic hydroxylclinohumite, $Mg_{0}Si_{4}O_{16}(OH)_{2}$, and synthetic hydroxylchondrodite, $Mg_5Si_2O_8(OH)_2$, have been determined using high-pressure singlecrystal X-ray diffraction, carried out in a diamond anvil cell under hydrostatic conditions. Both humites are monoclinic (space group $P2_1/b$ with a unique): a = 4.7490(3) Å, b = 10.2861(4) Å, c =13.6991(11) Å and $\alpha = 100.649(6)^{\circ}$ for hydroxylclinohumite, and a = 4.7449(2) Å, b = 10.3464(2)Å, c = 7.8990(6) Å, and $\alpha = 108.681(3)^{\circ}$ for hydroxylchondrodite. A third-order Birch-Murnaghan EoS was determined from unit-cell volume data to 8.1 GPa for hydroxylclinohumite: $V_0 = 657.69(5)$ Å³, $K_{\rm T}$ = 119.4(7) GPa and K' = 4.8(2). A similar analysis of hydroxylchondrodite for data collected to 7.8 GPa resulted in $V_0 = 367.36(3)$ Å³, $K_T = 115.7(8)$ GPa and K' = 4.9(2). Axial compression is anisotropic with the direction perpendicular to the close-packed anion layer, i.e., the **a** axis, being the least compressible. Axial moduli and their pressure derivatives are: $K_a = 162(1)$ GPa, $K_a' = 6.7(3)$, K_b = 97.9(5) GPa, $K_{\rm b}' = 4.0(1)$, $K_{\rm c} = 111.1(7)$ GPa and $K_{\rm c}' = 4.2(2)$ for hydroxylclinohumite. For hydroxylchondrodite: $K_a = 149(1)$ GPa, $K_a' = 6.8(3)$, $K_b = 101.3(4)$ GPa, $K_b' = 4.3(1)$, $K_c = 102.4(6)$ GPa, and $K_c' = 4.1(2)$. Comparison of the bulk moduli of these phases with other phases along the $Mg_2SiO_4-Mg(OH)_2$ join shows that the bulk modulus increases systematically with density (ρ) and can be approximated by, K_T (GPa) = 97(6) × ρ – 186(17). The bulk modulus also decreases systematically with water content: $K_{\rm T}$ (GPa) = 127.9 (16) – 2.75 (11) × wt% H₂O.