American Mineralogist, Volume 86, pages 1321–1330, 2001

First-principles modeling of the infrared spectrum of kaolinite

ETIENNE BALAN,^{1,*} A. MARCO SAITTA,² FRANCESCO MAURI,¹ AND GEORGES CALAS¹

¹Laboratoire de Minéralogie-Cristallographie, CNRS UMR 7590, Universités Paris VI et VII, IPGP, Case 115, 4 Place Jussieu, 75252 Paris cedex 05, France

²Laboratoire de Physique des Milieux Condensés, CNRS UMR 7602, Université Paris VI, 4 Place Jussieu, 75252 Paris cedex 05, France

ABSTRACT

The theoretical infrared spectrum of kaolinite $[Al_2Si_2O_5(OH)_4$, triclinic] was computed using ab initio quantum mechanical calculations. Calculations were performed using the Density Functional Theory and the generalized gradient approximation. The low-frequency dielectric tensor of kaolinite was determined as a function of the light frequency using linear response theory. The IR spectrum was then calculated using a model that takes into account the shape and size of kaolinite particles. A remarkable agreement was obtained between theory and experiment, especially on the position of the stretching bands of OH groups. This agreement provides a firm basis for the interpretation of the IR spectrum of kaolinite in terms of structural parameters.