TEM and SFM of exsolution and twinning in an alkali feldspar

HUIFANG XU,^{1,*} DAVID R. VEBLEN,² PETER BUSECK,³ AND B.L. RAMAKRISHNA³

¹Department of Earth and Planetary Sciences, The University of New Mexico, Albuquerque, New Mexico 87131-1116, U.S.A.
²Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland 21218, U.S.A.
³Department of Chemistry/Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, U.S.A.

ABSTRACT

Transmission electron microscopy (TEM) reveals exsolution lamellae in a cryptoperthite; their spacing results in a greenish-yellow iridescent color. High-resolution TEM images show that the boundaries between Ab-rich and Or-rich lamellae are semi-coherent along the b axis.

Scanning force microscopy (SFM) of a (001) cleavage surface reveals exsolution lamellae, wavelike (001) surfaces of the Ab-rich lamellae, and surface steps with heights of ~6.6 and ~3 Å. The wave-like (001) surfaces of albite twin lamellae may result from surface relaxation. Surface height differences between Ab- and Or-rich lamellae in some areas indicate a semi-coherent boundary along the **c** axis.