Experiments on the stability of cancrinite in the system Na₂O-CaO-Al₂O₃-SiO₂-CO₂-H₂O MONA SIRBESCU^{*}AND DAVID M. JENKINS[†]

Department of Geological Sciences and Environmental Studies, Binghamton University, Binghamton, New York 13902-6000, U.S.A.

ABSTRACT

The synthesis and upper thermal stability of cancrinite were investigated experimentally in the system Na₂O-CaO-Al₂O₃-SiO₂-CO₂-H₂O at 2 kbar and in the presence of a mixed H₂O-CO₂ fluid. Cancrinite could only be formed under water-rich conditions in this system. The breakdown of cancrinite to nepheline + calcite occurred at decreasing temperatures with increasing X_{CO_2} as expected for a dehydration reaction of the form cancrinite = nepheline + calcite + n_{H₂O}. Partial melting and the formation of melilite was observed at the highest temperatures and for the most H₂O-rich fluid compositions.

The molecular water content of the cancrinite formed at various T- X_{CO_2} conditions was evaluated with a combined infrared (IR)-thermogravimetry (TG) technique. Results suggest (within analytical error) a decrease in the water content of cancrinite toward the breakdown reaction and an apparently constant water content along the breakdown curve. Thermodynamic analysis combining the compositional and phase-equilibrium data from this study was performed and yielded a value of $\Delta H_i^0 = -14722 \pm 147$ kJ and $S^0 = 981 \pm 118$ J/K at 298 K and 1 bar for synthetic cancrinite of the composition Na₆Ca_{1.5}[Al₆Si₆O₂₄](CO₃)_{1.5}·1.1(±0.4)H₂O. This study demonstrates the important role that water plays in controlling the stability of cancrinite in igneous and metamorphic rocks.