Silicate and oxide exsolution in pseudo-spinifex olivine from metaultramafic rocks of the Betic Ophiolitic Association: A TEM study

M.D. RUIZ CRUZ,^{1,*} E. PUGA,² AND J.M. NIETO³

¹Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain ²Instituto Andaluz de Ciencias de la Tierra (CSIC-UGRA), Facultad de Ciencias, Avenida Fuentenueva s/n, 18002 Granada, Spain ³Departamento de Geología, Facultad de Ciencias Experimentales, Universidad de Huelva, 21819 Palos de la Frontera, Huelva, Spain

ABSTRACT

Transmission electron microscopy (TEM) has been used to study submicroscopic particles in spinifex-like textured olivine from secondary harzburgites collected from the Cerro del Almirez locality in the Mulhacén Complex (Betic Cordillera, SE Spain). Three main types of submicroscopic oxides have been identified: (1) equidimensional Fe-rich spinel (magnetite), with average grain size in the order of $1-2 \mu m$; (2) elongated Cr-bearing spinels (Fe-chromite to Cr-magnetite) with sizes ranging from 0.2 to 1 μm long and 0.01 to 0.1 μm thick; and (3) equidimensional Ti-rich particles from <0.01 to 0.1 μm and compositions ranging from ilmenite to Fe-Cr-Ti oxide. Chromite and ilmenite particles form parallel, chromite-rich and ilmenite-rich bands, extending along the **a**-axis of the host olivine. Both phases show a fixed orientation relationship with olivine, with the approximately hexagonal close-packed oxygen planes being parallel in both structures. These textural relationships indicate that both chromite and ilmenite were formed during a common exsolution process. Magnetite particles also are orientated preferentially relative to the olivine, but these particles are homogeneously distributed within the olivine, suggesting either a primary origin or an exsolution process that was not contemporaneous with formation of chromite and ilmenite.

Chromite particles commonly are accompanied by lamellae of talc and/or enstatite, both showing a consistent orientation relationship with olivine. Talc lamellae are twice as thick as the associated chromite crystals, whereas enstatite lamellae show a greater thickness and, moreover, form single enstatite particles, which consist of clino- and orthoenstatite intergrowths. Talc formation may be explained by exsolution, together with spinel, from olivine containing OH-groups, probably related to incomplete dehydration of serpentine during olivine formation. On the basis of these results and previously reported petrological data, we have concluded that exsolution of chromite-silicate and ilmenite occurred during the retrograde stage that followed the climax of the eo-Alpine metamorphic event.