Unusual M³⁺ cations in synthetic amphiboles with nominal fluoro-eckermannite composition: Deviations from stoichiometry and structural effects of the cummingtonite component

ROBERTA OBERTI,^{1,*} FRANK C. HAWTHORNE,^{1,†} FERNANDO CAMARA,¹ AND MATI RAUDSEPP²

¹CNR-Centro di Studio per la Cristallochimica e la Cristallografia (CSCC) via Ferrata 1, I-27100 Pavia, Italy ²Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia Canada V6T 1Z4

ABSTRACT

Single-crystal structure-refinement and electron-microprobe analysis of synthetic amphiboles with nominal fluoro-eckermannite composition and different trivalent cations (Al, Sc, Ti³⁺, V³⁺, Cr³⁺, Ga,) show significant deviations from nominal stoichiometry. Synthetic Sc- and Cr-bearing fluoro-eckermannite are close to nominal stoichiometry, whereas the corresponding nominal Al-, V³⁺-, Ga-, and Ti-bearing species contain very few trivalent cations and approximate Na(NaMg)Mg₅Si₈O₂₂ F_{22} , a composition that has not been found in natural systems. The presence of a significant cummingtonite component strongly affects unit-cell parameters, coordination geometry around the B-, C-, and T-group sites, and cation ordering at the A-group sites. The high-charge cations are completely ordered at the M2 site, and there is a well-developed linear relationship between $\langle M2-O \rangle$ and the constituent-cation radius at the M2 site. The synthetic fluoro-eckermannite structure is stabilized by large spherically symmetric trivalent cations at the M2 site; for small spherically symmetric trivalent cations, it is not stable (at least at the synthesis conditions used here). Synthetic chromium-fluoro-eckermannite is stabilized by the non-spherically symmetric $3d^3$ electronic arrangement, whereas Ga and V^{3+} ($3d^2$) do not stabilize the fluoroeckermannite structure.