American Mineralogist, Volume 84, pages 199–202, 1999

LETTERS

Structure refinement of a birefringent Cr-bearing majorite Mg₃(Mg_{0.34}Si_{0.34}Al_{0.18}Cr_{0.14})₂Si₃O₁₂ AKIHIKO NAKATSUKA,¹AKIRA YOSHIASA,² TAKAMITSU YAMANAKA,² AND EIJI ITO³

¹Department of Advanced Materials Science and Engineering, Faculty of Engineering, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan

²Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan ³Institute for Study of the Earth's Interior, Okayama University, Misasa, Tottori 682-0193, Japan

ABSTRACT

A single crystal of a birefringent Cr-bearing majorite, $Mg_3(Mg_{0.34}Si_{0.34}Al_{0.18}Cr_{0.14})_2Si_3O_{12}$, was synthesized at 20 GPa and 2000 °C using "6–8" type uniaxial split-sphere apparatus. This garnet is tetragonal with the unit-cell parameters $a \approx c$ and deviates slightly from cubic symmetry. The structure refinements using single-crystal X-ray diffraction intensity data were carried out by assuming three space groups (one cubic and two tetragonal) to determine the most probable symmetry. The most probable space group is $I4_1/a$ (tetragonal). The Cr ions show a disordered distribution between the two nonequivalent octahedral sites in the $I4_1/a$ structure.