Lattice simulation studies of the ferroelastic phase transitions in (Na,K)AlSi₃O₈ and (Sr,Ca)Al₂Si₂O₈ feldspar solid solutions

MARTIN T. DOVE AND SIMON A.T. REDFERN

Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, U.K.

Abstract

Lattice-energy minimization calculations have been performed on the feldspar systems $(Ca,Sr)Al_2Si_2O_8$ and disordered $(Na_k)AlSi_3O_8$ as functions of composition to simulate the ferroelastic phase transitions $I2/c-I\overline{1}$ and $C2/m-C\overline{1}$, respectively. In both cases the phase transition occurs as a function of composition and is driven by the vanishing of the quantity $C_{44}C_{66} - C_{46}^2$, without any of the individual elastic constants being strongly dependent on composition and without softening of an optic mode. In both cases, the strains ϵ_4 and ϵ_6 are proportional to each other for small values of strain, but nonlinear coupling becomes dominant when $|\epsilon_4|$ becomes larger than about 0.02. The results are consistent with experimental data and explain the nature of coupling of the displacive transition to Al-Si ordering in Al:Si 2:2 feldspars.